3 resultados para Glia de Bergmann e Cerebelo

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular origin of the acetylcholinesterase (AChE) associated with amyloid plaques in the Alzheimer’s disease (AD) brain is unknown. In this study we report that amyloid β-peptides (Aβ) increased AChE levels in both neuronal and astrocytic primary cultures, supporting the possibility that both neurons and glia may make a direct contribution to the pool of AChE seen around amyloid deposits in the AD brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (~275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity of non-native species to undergo rapid adaptive change provides opportunities to research contemporary evolution through natural experiments. This capacity is particularly true when considering ecogeographical rules, to which non-native species have been shown to conform within relatively short periods of time. Ecogeographical rules explain predictable spatial patterns of morphology, physiology, life history and behaviour. We tested whether Australian populations of non-native starling, Sturnus vulgaris, introduced to the country approximately 150 years ago, exhibited predicted environmental clines in body size, appendage size and heart size (Bergmann's, Allen's and Hesse's rules, respectively). Adult starlings (n = 411) were collected from 28 localities from across eastern Australia from 2011 to 2012. Linear models were constructed to examine the relationships between morphology and local environment. Patterns of variation in body mass and bill surface area were consistent with Bergmann's and Allen's rules, respectively (small body size and larger bill size in warmer climates), with maximum summer temperature being a strongly weighted predictor of both variables. In the only intraspecific test of Hesse's rule in birds to date, we found no evidence to support the idea that relative heart size will be larger in individuals which live in colder climates. Our study does provide evidence that maximum temperature is a strong driver of morphological adaptation for starlings in Australia. The changes in morphology presented here demonstrate the potential for avian species to make rapid adaptive changes in relation to a changing climate to ameliorate the effects of heat stress.