8 resultados para Gene network

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In an attempt to improve automated gene prediction in the untranslated region of a gene, we completed an in-depth analysis of the minimum free energy for 8,689 sub-genetic DNA sequences. We expanded Zhang's classification model and classified each sub-genetic sequence into one of 27 possible motifs. We calculated the minimum free energy for each motif to explore statistical features that correlate to biologically relevant sub-genetic sequences. If biologically relevant sub-genetic sequences fall into distinct free energy quanta it may be possible to characterize a motif based on its minimum free energy. Proper characterization of motifs can lead to greater understanding in automated genefinding, gene variability and the role DNA structure plays in gene network regulation.

Our analysis determined: (1) the average free energy value for exons, introns and other biologically relevant sub-genetic sequences, (2) that these subsequences do not exist in distinct energy quanta, (3) that introns exist however in a tightly coupled average minimum free energy quantum compared to all other biologically relevant sub-genetic sequence types, (4) that single exon genes demonstrate a higher stability than exons which span the entire coding sequence as part of a multi-exon gene and (5) that all motif types contain a free energy global minimum at approximately nucleotide position 1,000 before reaching a plateau. These results should be relevant to the biochemist and bioinformatician seeking to understand the relationship between sub-genetic sequences and the information behind them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key applications of microarray studies is to select and classify gene expression profiles of cancer and normal subjects. In this study, two hybrid approaches–genetic algorithm with decision tree (GADT) and genetic algorithm with neural network (GANN)–are utilized to select optimal gene sets which contribute to the highest classification accuracy. Two benchmark microarray datasets were tested, and the most significant disease related genes have been identified. Furthermore, the selected gene sets achieved comparably high sample classification accuracy (96.79% and 94.92% in colon cancer dataset, 98.67% and 98.05% in leukemia dataset) compared with those obtained by mRMR algorithm. The study results indicate that these two hybrid methods are able to select disease related genes and improve classification accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkage analysis is a successful procedure to associate diseases with specific genomic regions. These regions are often large, containing hundreds of genes, which make experimental methods employed to identify the disease gene arduous and expensive. We present two methods to prioritize candidates for further experimental study: Common Pathway Scanning (CPS) and Common Module Profiling (CMP). CPS is based on the assumption that common phenotypes are associated with dysfunction in proteins that participate in the same complex or pathway. CPS applies network data derived from protein–protein interaction (PPI) and pathway databases to identify relationships between genes. CMP identifies likely candidates using a domain-dependent sequence similarity approach, based on the hypothesis that disruption of genes of similar function will lead to the same phenotype. Both algorithms use two forms of input data: known disease genes or multiple disease loci. When using known disease genes as input, our combined methods have a sensitivity of 0.52 and a specificity of 0.97 and reduce the candidate list by 13-fold. Using multiple loci, our methods successfully identify disease genes for all benchmark diseases with a sensitivity of 0.84 and a specificity of 0.63. Our combined approach prioritizes good candidates and will accelerate the disease gene discovery process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Novel predictive markers are needed to accurately diagnose the breast cancer patients so they do not need to undergo any unnecessary aggressive therapies. Various gene expression studies based predictive gene signatureshave generated in the recent past to predict the binary estrogen-receptor subclass or to predict the therapy response subclass. However, the existing algorithms comes with many limitations, including low predictive performances over multiple cohorts of patients and non-significant or limited biological roles associated with thepredictive gene signatures. Therefore, the aim of this study is to develop novel predictive markers with improved performances.Methods: We propose a novel prediction algorithm called IPA to construct a predictive gene signature for performing multiple prediction tasks of predicting estrogen-receptor based binary subclass and predicting chemotherapy response (neoadjuvantly) based binary subclass. The constructed gene signature with considering multiple classification techniques was used to evaluate the algorithm performance on multiple cohorts of breast cancer patients.Results: The evaluation on multiple validation cohorts demonstrated that proposed algorithm achieved stable and high performance to perform prediction tasks, with consideration given to any classification techniques. We show that the predictive gene signature of our proposed algorithm reflects the mechanisms underlying the estrogen-receptors or response to therapy with significant greater biological interpretations, compared with the other existing algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a novel method for gene selection based on a modification of analytic hierarchy process (AHP). The modified AHP (MAHP) is able to deal with quantitative factors that are statistics of five individual gene ranking methods: two-sample t-test, entropy test, receiver operating characteristic curve, Wilcoxon test, and signal to noise ratio. The most prominent discriminant genes serve as inputs to a range of classifiers including linear discriminant analysis, k-nearest neighbors, probabilistic neural network, support vector machine, and multilayer perceptron. Gene subsets selected by MAHP are compared with those of four competing approaches: information gain, symmetrical uncertainty, Bhattacharyya distance and ReliefF. Four benchmark microarray datasets: diffuse large B-cell lymphoma, leukemia cancer, prostate and colon are utilized for experiments. As the number of samples in microarray data datasets are limited, the leave one out cross validation strategy is applied rather than the traditional cross validation. Experimental results demonstrate the significant dominance of the proposed MAHP against the competing methods in terms of both accuracy and stability. With a benefit of inexpensive computational cost, MAHP is useful for cancer diagnosis using DNA gene expression profiles in the real clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a modification to the analytic hierarchy process (AHP) to select the most informative genes that serve as inputs to an interval type-2 fuzzy logic system (IT2FLS) for cancer classification. Unlike the conventional AHP, the modified AHP allows us to process quantitative factors that are ranking outcomes of individual gene selection methods including t-test, entropy, receiver operating characteristic curve, Wilcoxon test, and signal-to-noise ratio. The IT2FLS is introduced for the classification task due to its great ability for handling nonlinear, noisy, and outlier data, which are common problems in cancer microarray gene expression profiles. An unsupervised learning strategy using the fuzzy c-means clustering is employed to initialize parameters of the IT2FLS. Other classifiers such as multilayer perceptron network, support vector machine, and fuzzy ARTMAP are also implemented for comparisons. Experiments are carried out on three well-known microarray datasets: diffuse large B-cell lymphoma, leukemia cancer, and prostate. Rather than the traditional cross validation, leave-one-out cross-validation strategy is applied for the experiments. Results demonstrate the performance dominance of the IT2FLS against the competing classifiers. More noticeably, the modified AHP improves the classification performance not only of the IT2FLS but of all other classifiers as well. Accordingly, the proposed combination between the modified AHP and IT2FLS is a powerful tool for cancer classification and can be implemented as a real clinical decision support system that is useful for medical practitioners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is a leading cause of cancer-related death worldwide. The early diagnosis of cancer has demonstrated to be greatly helpful for curing the disease effectively. Microarray technology provides a promising approach of exploiting gene profiles for cancer diagnosis. In this study, the authors propose a gene expression programming (GEP)-based model to predict lung cancer from microarray data. The authors use two gene selection methods to extract the significant lung cancer related genes, and accordingly propose different GEP-based prediction models. Prediction performance evaluations and comparisons between the authors' GEP models and three representative machine learning methods, support vector machine, multi-layer perceptron and radial basis function neural network, were conducted thoroughly on real microarray lung cancer datasets. Reliability was assessed by the cross-data set validation. The experimental results show that the GEP model using fewer feature genes outperformed other models in terms of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. It is concluded that GEP model is a better solution to lung cancer prediction problems.