7 resultados para Gastrointestinal system--Microbiology

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased energy consumption, especially increased consumption of sweet energy-dense food, is thought to be one of the main contributors to the escalating rates in overweight individuals and obesity globally. The individual's ability to detect or sense sweetness in the oral cavity is thought to be one of many factors influencing food acceptance, and therefore, taste may play an essential role in modulating food acceptance and/or energy intake. Emerging evidence now suggests that the sweet taste signaling mechanisms identified in the oral cavity also operate in the gastrointestinal system and may influence the development of satiety. Understanding the individual differences in detecting sweetness in both the oral and gastrointestinal system towards both caloric sugar and high intensity sweetener and the functional role of the sweet taste system may be important in understanding the reasons for excess energy intake. This review will summarize evidence of possible associations between the sweet taste mechanisms within the oral cavity, gastrointestinal tract and the brain systems towards both caloric sugar and high intensity sweetener and sweet taste function, which may influence satiation, satiety and, perhaps, predisposition to being overweight and obesity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cases of autism have frequently been reported in association with gastrointestinal problems. These observations have stimulated investigations into possible abnormalities of intestinal microbiota in autistic patients. The objectives of this paper were to review the possible involvement and mechanisms of gastrointestinal microbiota in autistic spectrum disorder and explain the possible role of gastrointestinal microbiota in the condition. This review addresses the possible involvement of bacteria, viruses and fungi, and their products in autism. Direct viral damage of neurons or disruption of normal neurodevelopment by immune elements such as cytokines, nitric oxide and bacterial products, including lipopolysaccharides, toxins and metabolites, have been suggested to contribute to autistic pathology. Numerous intestinal microbial abnormalities have been reported in individuals with autism. Research to date exploring possible gastrointestinal problems and infection in autism has been limited by small and heterogeneous samples, study design flaws and conflicting results. Furthermore, interventions designed to modify the intestinal microbial population of autistic patients are few and limited in their generalisation. In order to bring clarity to this field, high-quality and targeted investigations are needed to explore the role of gastrointestinal microbiology in autism. To this end, several promising avenues for future research are suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to explore and compare experiences with and attitudes toward psychotherapy and antidepressants of patients with inflammatory bowel disease (IBD) and functional gastrointestinal disorders (FGiDs). Patients from gastroenterology clinic databases were invited to an online survey. Student's t test, Mann-Whitney U test, chi-square test, and Fisher's test were used to compare patients with IBD and FGiD on demographics and variables of interest. Of 86 participants, 56 (65%) had IBD and 30 (35%) had FGiDs. Mean levels of anxiety, depressive, and stress symptoms were within the moderate to severe range. Psychological care and antidepressants were offered to significantly more FGiD than to IBD respondents (37% vs. 9%; p = .009). Although the symptoms were generally reduced after the prescription of antidepressants, only 30% of IBD respondents and 21% of FGiD respondents using antidepressants would recommend them to others. In contrast, 53% of IBD respondents and 69% of FGiD respondents who used psychotherapy would recommend it to others. Both these therapies were valued by recipients; however, neither was reported to improve gastrointestinal (GI) symptoms. Given the high desire for and positive experiences of psychological care for these 2 common GI conditions, access to formal psychological support services within GI clinics would appear to be the most efficient model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Difficulties associated with efficient delivery and targeting of miRNAs to cells is hampering the real world application of miRNA technology. This study utilized an influenza A-based delivery system to express miR-155 in order to knockdown SOCS1 mRNA. Using qPCR and dual luciferase technology we show that miR-155 delivery resulted in a significant increase in cellular miR-155 which facilitated a downregulation of SOCS1 gene expression and a functional increase in IL-6 and IFN-β cytokines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso-energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro-medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of ∼16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of ∼38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB(-)) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the synthesis of active uptake systems. The Pst phosphate transport system is one such system, responsible for the internalization of phosphate when cells are in phosphate-limited environments. Our investigations reveal the presence of multiple Pst phosphate uptake systems that exist across three distinct operons in Nostoc punctiforme and functionally characterize the role of the gene product PstB1 as being crucial for the maintenance of phosphate accumulation. We demonstrate that the genes pstB2, pstB3, and pstB4 show alterations in expression to compensate for the deletion of pstB1 The overall outcomes of this work provide insights as to the complex transport mechanisms that exist in cyanobacteria like N. punctiforme, allowing them to thrive in low-phosphate environments.