26 resultados para Gas flow control

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the understanding of the heat transfer mechanism and to find a reliable and simple heat-transfer model, the gas flow and heat transfer between fluidized beds and the surfaces of an immersed object is numerically simulated based on a double particle-layer and porous medium model. The velocity field and temperature distribution of the gas and particles are analysed during the heat transfer process. The simulation shows that the change of gas velocity with the distance from immersed surface is consistent with the variation of bed voidage, and is used to validate approximately dimensional analysing result that the gas velocity between immersed surface and particles is 4.6Umf/εmf. The effects of particle size and particle residence time on the thermal penetration depth and the heat-transfer coefficients are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a conveyor-based methodology to model complex vehicle flows common to factory and distribution warehouse facilities. The AGV and human path modelling techniques available in many commercial discrete event simulation packages require extensive knowledge and time to implement even the simplest flow control rules for multiple vehicle interaction. Although discrete event simulation is accepted as an effective tool to model vehicle delivery movements, human paths and delivery schedules for modern assembly lines, the time to generate accurate models is a significant limitation of existing simulation-based optimisation methodologies. The flow control method has been successfully implemented using two commercial simulation packages. It provides a realistic visual representation, as well as accurate statistical results, and reduces the model development process cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the understanding of the heat transfer mechanism and find a reliable and simple heat-transfer model, the gas flow and heat transfer between fluidised beds and immersed object surfaces was numerically simulated based on a double particlelayer and porous medium model. The velocity field and temperature distribution of gas were discussed to analyse the heat transfer process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wetland and floodplain ecosystems along many regulated rivers are highly stressed, primarily due to a lack of environmental flows of appropriate magnitude, frequency, duration, and timing to support ecological functions. In the absence of increased environmental flows, the ecological health of river ecosystems can be enhanced by the operation of existing and new flow-control infrastructure (weirs and regulators) to return more natural environmental flow regimes to specific areas. However, determining the optimal investment and operation strategies over time is a complex task due to several factors including the multiple environmental values attached to wetlands, spatial and temporal heterogeneity and dependencies, nonlinearity, and time-dependent decisions. This makes for a very large number of decision variables over a long planning horizon. The focus of this paper is the development of a nonlinear integer programming model that accommodates these complexities. The mathematical objective aims to return the natural flow regime of key components of river ecosystems in terms of flood timing, flood duration, and interflood period. We applied a 2-stage recursive heuristic using tabu search to solve the model and tested it on the entire South Australian River Murray floodplain. We conclude that modern meta-heuristics can be used to solve the very complex nonlinear problems with spatial and temporal dependencies typical of environmental flow allocation in regulated river ecosystems. The model has been used to inform the investment in, and operation of, flow-control infrastructure in the South Australian River Murray.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A gas flow unified measurement system (UMS-G) for sequential measurement of gas diffusion and gas permeability of geosynthetic clay liners (GCLs) under applied stress conditions (2 to 20 kPa) is described. Measurements made with the UMS-G are compared with measurements made with conventional experimental devices and are found to give similar results. The UMS-G removes the need to rely on two separate systems and increases further the reliability of the gas properties’ measurements. This study also shows that the gas diffusion and gas permeability reduce greatly with the increase of both gravimetric water content and apparent degree of saturation. The effect of applied stress on gas diffusion and gas permeability is found to be more pronounced at gravimetric water content greater than 60%. These findings suggest that at a nominal overburden stress of 20 kPa, the GCL used in the present investigation needs to be hydrated to 134% gravimetric water content (65% apparent degree of saturation) before gas diffusion and gas permeability drop to 5.5 × 10−11 m2·s−1 and 8.0 × 10−13 m·s−1, respectively, and to an even higher gravimetric water content (apparent degrees of saturation) at lower stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Weirs are common structure to regulate discharge and flow control inwater conveyance channels and hydraulic structures. Labyrinth weirsconsidered one of economical and effective methods to increase the efficiency of weirs that crest length of weirs increase without a related increase in structure width. Therefore, flow discharge will be increased. Compared to use compound weir, there are some benefits including the simultaneous passage of floating materials such as wood, ice, etc. Also, sedimentations are pass through compound weir. The trapezoidal Labyrinth weir is one of the combined models. In present study 15 physical models that discussion effect changes sidewall angle of labyrinth weir on discharge coefficient of flow over and through the compound trapezoidal one cycle Labyrinth weir. Also, it is developed design curves with various shapes and configurations. The researchshowed here mainly objectives at determining the coefficient of discharge for flow-over trapezoidal labyrinth weir by performing tests at wide range of values of side wall angles (α) from 6° to 35° and compound linear weir to be compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A highly programmable electro-mechanical surface is developed using an effective array of individual pins arranged in a gridform. Each pin can be independently raised or lowered to create a wide range of contoured surfaces. It was found that as the number of elements increased. high levels of accuracy could still be achieved. however the required processing power increased logarithmically. This finding was attributed to the large amounts of data being passed. and subsequently led to a second focus; various methods of data management and flow control techniques within large-scale multi elemental systems. Results indicated a large potential for highly programmable surfaces within industry to provide a computer controlled surface for rapid prototyping. The research also revealed the potential for such a device to be used as a HID within Haptic applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of performance modeling for large-scale heterogeneous distributed systems with emphases on multi-cluster computing systems. Since the overall performance of distributed systems is often depends on the effectiveness of its communication network, the study of the interconnection networks for these systems is very important. Performance modeling is required to avoid poorly chosen components and architectures as well as discovering a serious shortfall during system testing just prior to deployment time. However, the multiplicity of components and associated complexity make performance analysis of distributed computing systems a challenging task. To this end, we present an analytical performance model for the interconnection networks of heterogeneous multi-cluster systems. The analysis is based on a parametric family of fat-trees, the m-port n-tree, and a deterministic routing algorithm, which is proposed in this paper. The model is validated through comprehensive simulation, which demonstrated that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc nanowires have been synthesized by heating a mixture of boron and zinc oxide (ZnO) powders at 1050 °C under a nitrogen atmosphere. The influences of the gas flow rate and the substrate character on the nanowire formation were investigated. It was found that higher-flow rate of gas led to the formation of thinner nanowires; while lower-flow rate of gas produced thicker nanowires and even particles due to the higher partial pressure of Zn vapor in this case. Zn nanowires can be produced on alumina and quartz substrates, but not on a stainless-steel substrate under the same or different synthetic conditions. Photoluminescence measurements were conducted on Zn nanowires and particles and weak emission bands at 482 and 493 nm were observed, which may be contributed by the thin ZnO film on the nanowire surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When growing one-dimensional (1D) nanomaterials via the vapour–liquid–solid (VLS) model, the substrates usually need to be coated with a layer of catalyst film. In this study, however, an effective approach for the synthesis of boron nitride (BN) nanowires directly onto commercial stainless-steel foils has been demonstrated. Growth occurs by heating boron and zinc oxide (ZnO) powders at 1100 °C under a mixture of nitrogen and hydrogen gas flow (200 ml min−1). The stainless-steel foils played an additional role of catalyst besides substrate during the VLS growth of these BN nanowires. The as-synthesized nanowires emit strong photoluminescence (PL) bands at 515, 535 and 728 nm. In addition, we found that the gas flow rate and the hydrogen content in the gas mixture strongly affected the diameter and yield of the nanowires by changing the relative concentration of the nanowire growth species in the chamber.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large-scale, high-density, and patterned carbon nanotubes (CNTs) on both pure Si and quartz (SiO2) substrates have been produced using different approaches. The CNTs were synthesized by pyrolysis of the ball-milled iron phthalocyanine (FePc) in a tube furnace under a Ar-5% H2 gas flow. Because patterned CNTs are difficult to grow directly on smooth and perfect single-crystalline Si wafer surface, mechanical scratches were created to help the selective deposition and growth of CNTs on the scratched areas. This simple process does not require pre-deposition of any metal catalysts. For SiO2 substrates, which can be readily covered by a CNT film, patterned CNTs are produced using a TEM grid as mask to cover the areas where CNTs are not needed. The growth temperature and vapor density have strong influence on the patterned CNT formation. The scratch areas with a special structure and a higher surface energy help the selective nucleation of CNTs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To optimize a regenerator’s structure and its operation parameters and, consequently, to increase the efficiency of heat recovery and to save energy, a computational approach is used to study the unsteady three-dimensional flow and heat transfer. The simulation is performed in two steps. In the first step, the gas flow and heat transfer in a typical sphere-bed unit is simulated to deduce a dimensionless equation of heat transfer between gas and sphere. In the second step, a model is developed to simplify the prototype and to simulate the gas flow and heat transfer in the whole regenerator. The heat exchange process in regenerators and the effects of the regenerator’s structure and operation parameters, such as gas mass flux, reversal time, regenerator height, sphere diameter, and thermophysical properties of the spheres, are studied with the model to determine efficiency of heat recovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanisms of heat and mass transfers between heat-treatment fluidised beds and immersed workpiece were studied by using computational simulation and experimental validation. A model called Double Particle-layer and Porous Medium was developed to simulate the gas flow and heat transfer between fluidised beds and immersed workpiece.