8 resultados para GLUT-4

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six untrained, male subjects (23 ± 1 years old, 84 ± 5 kg, VO2peak= 3.7 ± 0.8 l min–1) exercised for 60 min at 75 ± 1%VO2peak on 7 consecutive days.  Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by ~20% and muscle glycogen concentration by ~40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those  measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 ± 1.5 versus 3.4 ± 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 ± 3.0 versus 3.4 ± 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the interaction of exercise and diet on glucose transporter (GLUT-4) protein and mRNA expression in type I (soleus) and type II [extensor digitorum longus (EDL)] skeletal muscle. Forty-eight Sprague Dawley rats were randomly assigned to one of two dietary conditions: high-fat (FAT, n =24) or high-carbohydrate (CHO, n =24). Animals in each dietary condition were allocated to one of two groups: control (NT, n =8) or a group that performed 8 weeks of treadmill running (4 sessions week<sup>–1</sup> of 1000 m @ 28 m min<sup>–1</sup> , RUN, n =16). Eight trained rats were killed after their final exercise bout for determination of GLUT-4 protein and mRNA expression: the remainder were killed 48 h after their last session for measurement of muscle glycogen and triacylglycerol concentration. GLUT-4 protein expression in NT rats was similar in both muscles after 8 weeks of either diet. However, there was a main effect of training such that GLUT-4 protein was increased in the soleus of rats fed with either diet (P < 0.05) and in the EDL in animals fed with CHO (P < 0.05). There was a significant diet–training interaction on GLUT-4 mRNA, such that expression was increased in both the soleus (100% ↑P < 0.05) and EDL (142% ↑P < 0.01) in CHO-fed animals. Trained rats fed with FAT decreased mRNA expression in the EDL (↓ 45%, P < 0.05) but not the soleus (↓ 14%, NS). We conclude that exercise training in CHO-fed rats increased both GLUT-4 protein and mRNA expression in type I and type II skeletal muscle. Despite lower GLUT-4 mRNA in muscles from fat-fed animals, exercise-induced increases in GLUT-4 protein were largely preserved, suggesting that control of GLUT-4 protein and gene expression are modified independently by exercise and diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been speculated that creatine supplementation affects muscle glucose metabolism in humans by increasing muscle glycogen storage and up-regulating GLUT-4 protein expression. In the present study, we assessed the effects of creatine loading and prolonged supplementation on muscle glycogen storage and GLUT-4 mRNA and protein content in humans. A total of 20 subjects participated in a 6-week supplementation period during which creatine or a placebo was ingested. Muscle biopsies were taken before and after 5 days of creatine loading (20 g.day(-1)) and after 6 weeks of continued supplementation (2 g.day(-1)). Fasting plasma insulin concentrations, muscle creatine, glycogen and GLUT-4 protein content as well as GLUT-4, glycogen synthase-1 (GS-1) and glycogenin-1 (Gln-1) mRNA expression were determined. Creatine loading significantly increased total creatine, free creatine and creatine phosphate content with a concomitant 18 +/- 5% increase in muscle glycogen content (P<0.05). The subsequent use of a 2 g.day(-1) maintenance dose for 37 days did not maintain total creatine, creatine phosphate and glycogen content at the elevated levels. The initial increase in muscle glycogen accumulation could not be explained by an increase in fasting plasma insulin concentration, muscle GLUT-4 mRNA and/or protein content. In addition, neither muscle GS-1 nor Gln-1 mRNA expression was affected. We conclude that creatine ingestion itself stimulates muscle glycogen storage, but does not affect muscle GLUT-4 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty two, young, healthy individuals participated in three studies aiming to assess the effect of various types of physical activity - acute exercise of moderate intensity and duration, varying intensity, short-term training - on skeletal muscle GLUT-4 gene and protein expression as well as on a range of genes encoding the proteins involved in carbohydrate metabolism in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1.      Skeletal muscle is a highly plastic tissue that has a remarkable ability to adapt to external demands, such as exercise. Many of these adaptations can be explained by changes in skeletal muscle gene expression. A single bout of exercise is sufficient to induce the expression of some metabolic genes. We have focused our attention on the regulation of glucose transporter isoform 4 (GLUT-4) expression in human skeletal muscle.

2.      Glucose transporter isoform 4 gene expression is increased immediately following a single bout of exercise, and the GLUT-4 enhancer factor (GEF) and myocyte enhancer factor 2 (MEF2) transcription factors are required for this response. Glucose transporter isoform enhancer factor and MEF2 DNA binding activities are increased following exercise, and the molecular mechanisms regulating MEF2 in exercising human skeletal muscle have also been examined.

3.      These studies find possible roles for histone deacetylase 5 (HDAC5), adenosine monophosphate–activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and p38 mitogen-activated protein kinase (MAPK) in regulating MEF2 through a series of complex interactions potentially involving MEF2 repression, coactivation and phosphorylation.

4.      Given that MEF2 is a transcription factor required for many exercise responsive genes, it is possible that these mechanisms are responsible for regulating the expression of a variety of metabolic genes during exercise. These mechanisms could also provide targets for the treatment and management of metabolic disease states, such as obesity and type 2 diabetes, which are characterized by mitochondrial dysfunction and insulin resistance in skeletal muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An acute bout of exercise increases skeletal muscle glucose uptake, improves glucose homeostasis and insulin sensitivity, and enhances muscle oxidative capacity. Recent studies have shown an association between these adaptations and the energy-sensing 5' AMP-activated protein kinase (AMPK), the activity of which is increased in response to exercise. Activation of AMPK has been associated with enhanced expression of key metabolic proteins such as GLUT-4, hexokinase II (HKII), and mitochondrial enzymes, similar to exercise. It has been hypothesized that AMPK might regulate gene and protein expression through direct interaction with the nucleus. The purpose of this study was to determine if nuclear AMPK α2 content in human skeletal muscle was increased by exercise. Following 60 min of cycling at 72 +/- 1% of VO2peak in six male volunteers (20.6 +/- 2.1 years; 72.9 +/- 2.1 kg; VO2peak = 3.62 +/- 0.18 l/min), nuclear AMPK α2 content was increased 1.9 +/- 0.4-fold (P = 0.024). There was no change in whole-cell AMPK α2 content or AMPK α2 mRNA abundance. These results suggest that nuclear translocation of AMPK might mediate the effects of exercise on skeletal muscle gene and protein expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We determined the effect of an acute bout of swimming (8 × 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 ± 31 vs. 247 ± 16 μmol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 ± 0.05 and 0.32 ± 0.04 to 0.63 ± 0.08 vs. 0.57 ± 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (∼45%) and CHO-supplemented (∼115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.