15 resultados para GLASS-INFILTRATED ALUMINA COMPOSITE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg-based metallic glass interpenetrating phase composites (IPCs) containing 30-70 vol% titanium was fabricated in this study. The effects of reinforced phase volume fraction and interspace on the mechanical properties were investigated systematically. With increasing the volume fraction of titanium, the fracture strength and strain increased up to 1860 MPa and 44%, respectively. The results showed that the critical volume fraction (around 40%) of Ti metal should be required for significantly improving plasticity of IPC. Decreasing the interspace of the titanium phase could lead to enhancement of yield and fracture strength. The deformation behavior and strengthening mechanisms were discussed in detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report an Mg-based metallic glass/titanium interpenetrating phase composite in which constituent phases form a homogeneously interconnected network. The porous titanium constrains shear bands propagation thoroughly and promotes shear bands branching and intersection subsequently. The homogeneous phase distribution promotes regularly distributed local shear deformation and leads to a uniform deformation for the composites. Moreover, the interpenetrating phase structure introduces a mutual-reinforcement between metallic glass and titanium. Therefore, the composite exhibits excellent mechanical performance with compressive fracture strength of 1783 MPa and fracture strain of 31%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light-weight structure is one of the keys to improve the fuel efficiency and reduce the environmental buden of transport vehicles (automotive and rail). While fibreglass composites have been increasingly used to replace steel in automotive industry, the adoption rate for carbon fibre composites which are much lighter, stronger and stiffere than glass fibre composites, remains low. The main reason is the high cost of carbon fibres. To further reduce vehicle weight without excessive cost increase, one technique is to incorporate carbon fibre reinforcement into glass fibre composites and innovative design by selectively reinforcing along the main load path. Glass/carbon woven fabrics with epoxy resin matrix were utilised for preparing hybrid composite laminates. The in-plane mechanical properties such as tensile and three-point-bending flexural properties were investigated for laminates with different carbon fibre volume and lay-up scheme. It is shown that hybrid composite laminates with 50% carbon fibre reinforcement provide the best flexural properties when the carbon layers are at the exterior, while the alternating carbon/glass lay-up provides the highest compressive strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a novel method for manufacturing composite tubes utilizing the QuickstepTM process has been developed. Tubes manufactured from `quick-cure' Toray G83C prepreg have demonstrated highly repeatable axial crush behavior with an average specific energy absorption (SEA) of 86 kJ/kg. The cure cycle is optimized by comparing the results from compression, dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and porosity testing. The tube lay-up is optimized using compression and porosity test results. The effect of changes in fiber-orientation on SEA is also investigated. Process development has resulted in a robust manufacturing method capable of producing fully cured, high performance composite tubes with a cure cycle of 7 min. This corresponds to a 95% reduction in time compared to an equivalent autoclave cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of recent increases in fuel prices and the growing number of accident fatalities, the two major concerns of the automotive industry and their customers are now occupant safety and fuel economy {1, 2]. Increasing the amount of energy and optimizing the manner in which energy is absorbed within vehicle crush zones can improve occupant survivability in the event of a crash, while fuel economy is improved through a reduction in weight.  Axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). This paper presents results from the tests conducted at quasi-static rates at Deakin Unniversity, Victoria Australia, and intermediate rate tests performed at the Oak Ridge National Laboratory, Tennessee  USA.   The quasi-static tests were conducted at 10mm/min (1.67x10-4m/s) using 5 different forms of initiation. Tests at intermediate rates were performed at speeds of 0.25m/s, 0.5m/s, 0.75m/s 1m/s, 2m/s and 4m/s. Quasi-static tests of tubular specimens showed high specific energy absorption (SEA) values with 86 kJ/kg for Carbon/Epoxy specimens. The SEA of the Glass/Polypropylene specimens was measured to be 29 kJ/kg. Results from the intermediate test rates showed that SEA values did not fall below 55kJ/kg for carbon specimens or 35kJ/kg for the Glass/Polypropylene specimens. When compared with typical steel and aluminium, SEA values of 15 kJ/kg and 30kJ/kg respectively, the benefits of using composite materials in crash structures is apparent.                                                                     

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-static and intermediate rate axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). The quasi-static tests were conducted at 10 mm/min (1.67 x 10¯4 m/s); five different crush initiators were used. Tests at intermediate rates were performed at speeds of 0.25, 0.5, 0.75, 1, 2, and 4m/s. Modes of failure and specific energy absorption (SEA) values were studied. The highest SEA measured was 86 kJ/kg. This value was observed using Carbon/Epoxy samples at quasi static rates with a 45° chamfer initiator. The highest energy absorption for Twintex tubes was observed to be 57.56 kJ/kg during 45° chamfer initiated tests at 0.25 m/s. Compared with steel and aluminium, SEA values of 15 and 30 kJ/kg, respectively, the benefits of using composite materials in crash structures become apparent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An out-of-autoclave rapid heating/low pressure technique has been used to cure polyethersulfone (PES) toughened HexPly 8552. Mode I and mode II tests were conducted to evaluate the fracture toughness of the composites and the effectiveness of cure was determined through thermal analysis. When compared to the autoclave process, the out-of-autoclave process resulted in a 52% reduction in processing time, without any sacrifice to the matrix intrinsic properties. Thermal analysis indicated an 8 °C improvement in glass transition temperature (Tg) as a result of an increased degree of cure. The out-of-autoclave process did lack in the ability to facilitate the removal of porosity which affected the fracture toughness results. The porosity is believed to have increased the mode I propagation fracture toughness. However its effect on mode II was quite deleterious, shown by scanning electron microscopy (SEM). This study managed to identify a number of key parameters associated with the out-of-autoclave process essential for further optimisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main challenges in the manufacture of composite materials are low surface energy and the presence of silicon-containing contaminants, both of which greatly reduce surface adhesive strength. In this study, carbon fiber (CF) and E-glass epoxy resin composites were surface treated with the Accelerated Thermo-molecular adhesion Process (ATmaP). ATmaP is a multiaction surface treatment process where tailored nitrogen and oxygen functionalities are generated on the surface of the sample through the vaporization and atomization of n-methylpyrrolidone solution, injected via specially designed flame-treatment equipment. The treated surfaces of the polymer composites were analyzed using XPS, time of flight secondary ion mass spectrometry (ToF-SIMS), contact angle (CA) analysis and direct adhesion measurements. ATmaP treatment increased the surface concentration of polar functional groups while reducing surface contamination, resulting in increased adhesion strength. XPS and ToF-SIMS showed a significant decrease in silicon-containing species on the surface after ATmaP treatment. E-glass composite showed higher adhesion strength than CF composite, correlating with higher surface energy, higher concentrations of nitrogen and CO functional groups (from XPS) and higher concentrations of oxygen and nitrogen-containing functional groups (particularly C2H3O+ and C2H5NO+ molecular ions, from ToF-SIMS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interlaminar toughening of a carbon fibre reinforced composite by interleaving a thin layer (~20 microns) of poly(hydroxyether of bisphenol A) (phenoxy) nanofibres was explored in this work. Nanofibres, free of defect and averaging several hundred nanometres, were produced by electrospinning directly onto a pre-impregnated carbon fibre material (Toray G83C) at various concentrations between 0.5 wt % and 2 wt %. During curing at 150 °C, phenoxy diffuses through the epoxy resin to form a semi interpenetrating network with an inverse phase type of morphology where the epoxy became the co-continuous phase with a nodular morphology. This type of morphology improved the fracture toughness in mode I (opening failure) and mode II (in-plane shear failure) by up to 150% and 30%, respectively. Interlaminar shear stress test results showed that the interleaving did not negatively affect the effective in-plane strength of the composites. Furthermore, there was some evidence from DMTA and FT-IR analysis to suggest that inter-domain etherification between the residual epoxide groups with the pendant hydroxyl groups of the phenoxy occurred, also leading to an increase in glass transition temperature (~7.5 °C).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the crashworthiness of composite tubular structures was investigated along with the property structure relationships of a glass/polypropylene material. The energy absorption capacity of tubular structures in a number of different testing configurations was made. Two materials; carbon/epoxy pre-preg and a glass/polypropylene dry pre-preg were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shape memory alloy composites were manufactured using NiTi wires and woven glass fiber pre-impregnated fabrics. A closed form analytical model was developed to investigate the curvature achievable during actuation. The experimental results of actuation showed reasonable agreement with the model. Actuation temperatures were between ∼55 and 110 °C, curvatures of 0.25-0.5m-1 were obtained and the stresses in the wires were estimated to have reached 265MPa during actuation. An actuation curvature map was produced, which shows the actuation limits and approximate temperature-curvature curves for the general case of a composite containing shape memory alloy wires. © 2014 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO flower/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) composite films were prepared by spin-coating dimethyl sulfoxide doped PEDOT:PSS on the ZnO flowers grown on glass substrate. The thermoelectric properties of the ZnO flower/PEDOT:PSS composite films were measured at room temperature. As the number of spin coated PEDOT:PSS layer increased, the electrical conductivity of the ZnO flower/PEDOT:PSS composite films increases dramatically from 1-layer (177.3 S/m) to 4-layer (910.4 S/m), however, all the composite films have almost the same Seebeck coefficient (~20–22 μV/K). A maximum power factor of ~0.4 μWm−1 K−2 at room temperature was obtained from the composite film with 4-layer PEDOT:PSS.