12 resultados para GHZ

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric characteristics of conducting polymer-coated textiles in the frequency range 1–18 GHz were investigated using a non-contact, non-destructive free space technique. Polypyrrole coatings were applied by solution polymerization on fabric substrates using a range of concentrations of para-toluene-2-sulfonic acid (pTSA) as dopant and ferric chloride as oxidant. The conducting polymer coatings exhibited dispersive permittivity behaviour with a decrease in real and imaginary components of complex permittivity as frequency increased in the range tested. Both the permittivity and the loss factor were affected by the polymerization time of the conductive coating. It was found that the total shielding efficiency of these conductive fabrics is significant at short polymerization times and increases to values exceeding 80% with longer polymerization times. The reflection contribution to electromagnetic shielding also increases with polymerization time.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of permittivity measurements, electromagnetic interference shielding effectiveness, and heat generation due to microwave absorption in conducting polymer coated textiles are reported and discussed. The intrinsically conducting polymer, polypyrrole, doped with anthraquinone-2-sulfonic acid (AQSA) or para-toluene-2-sulfonic acid (pTSA) was applied on textile substrates and the resulting materials were investigated in the frequency range 1–18 GHz. The 0.54 mm thick conducting textile/polypyrrole composites absorbed up to 49.5% of the incident 30–35 W microwave radiation. A thermography station was used to monitor the temperature of these composites during the irradiation process, where absorption was confirmed via visible heat losses. Samples with lower conductivity showed larger temperature increases caused by microwave absorption compared to samples with higher conductivity. A sample with an average sheet resistivity of 150 Ω/sq. showed a maximum temperature increase of 5.27 °C, whilst a sample with a lower resistivity (105 Ω/sq.) rose by 3.85 °C.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dielectric behaviour of in-situ polymerized thin polypyrrole (PPy) films on synthetic textile substrates were obtained in the 1–18 GHz region using free space transmission and reflection methods. The PPy/para-toluene-2-sulphonic acid (pTSA) coated fabrics exhibited an absorption dominated total shielding effectiveness (SE) of up to −7.34 dB, which corresponds to more than 80% of incident radiation. The permittivity response is significantly influenced by the changes in ambient conditions, sample size and diffraction around the sample. Mathematical diffraction removal, time-gating tools and high gain horns were utilized to improve the permittivity response. A narrow time-gate of 0.15 ns produced accurate response for frequencies above 6.7 GHz and the high gain horns further improved the response in the 7.5–18 GHz range. Errors between calculated and measured values of reflection were most commonly within 2%, indicating good accuracy of the method.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microwave reflection, transmission and complex permittivity of paratoluene-2-sulfonic acid doped conducting polypyrrole (PPy/pTSA) coated Nylon-Lycra textiles in the 1-18 GHz frequency were investigated. The real part of permittivity increased with polymerization time and dopant concentration, reaching a plateau at certain dopant concentration and polymerization time. The imaginary part of permittivity showed a frequency dependent change throughout the tested range. All the samples had higher values of absorption than reflection. The total electromagnetic shielding effectiveness exceeded 80% for the highly pTSA doped samples coated for 3 hours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate microwave reflection, transmission, and complex permittivity of p-toluene-2-sulfonic acid doped conducting polypyrrole coated nylon-lycra textiles in the 1-18?GHz frequency with a view to potential applications in the interaction of electromagnetic radiation with such coated fabrics.

Design/methodology/approach –
The chemical polymerization of pyrrole is achieved by an oxidant, ferric chloride and doped with p-toluene sulfonic acid (pTSA) to enhance the conductivity and improve stability. Permittivity of the conducting textile substrates is performed using a free space transmission method accompanied by a mathematical diffraction reduction method.

Findings – The real part of permittivity increases with polymerization time and dopant concentration, reaching a plateau at certain dopant concentration and polymerization time. The imaginary part of permittivity shows a frequency dependent change throughout the test range. All the samples have higher values of absorption than reflection. The total electromagnetic shielding effectiveness exceeds 80 percent for the highly pTSA doped samples coated for 3?h.

Originality/value – A non-contact, non-destructive free space method thin flexible specimens to be tested with high accuracy across large frequency range. The non-destructive nature of the experiments enables investigation of the stability of the microwave transmission, reflection, absorption and complex permittivity values. Moreover, mathematical removal of the diffraction enables higher accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature changes in conducting polypyrrole/para-toluene-2-sulphonic acid (PPy/pTSA) coated nylon textiles due to microwave absorption in the 8–9 GHz and 15–16 GHz frequency ranges were obtained by a thermography station during simultaneous irradiation of the samples. The temperature values are compared and related to the amounts of reflection, transmission and absorption obtained with a non-contact free space transmission technique, indicating a relationship between microwave absorption and temperature increase. Non-conductive samples showed no temperature increase upon irradiation irrespective of frequency range. The maximum temperature difference of around 4 °C in the conducting fabrics relative to ambient temperature was observed in samples having 48% absorption and 26.5 ± 4% reflection. Samples polymerized for 60 or 120 min with a dopant concentration of 0.018 mol/l or polymerized for 180 min with a dopant concentration of 0.009 mol/l yielded optimum absorption levels. As the surface resistivity decreased and the reflection levels increased, the temperature increase upon irradiation reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New polymer electrolytes were synthesized and characterized based on a new polymer host. The motivation was to produce a host polymer with a high dielectric constant which should reduce ion clustering with an attendant increased conductivity. The new polymer host, poly(diethylene glycol carbonate) and its sodium triflate complexes were characterized by thermal analysis and AC impedance measurements. The polycarbonate backbone appears less flexible than the polyether hosts as evidenced by the higher glass transition temperatures. The conductivity for the sodium triflate complexes was measured as ~ 10−5 S cm−1 at 55 °C and the dielectric constant of the host polymer was found to be 3.6 at 3 GHz. The low conductivity is attributed to rigidity of the polycarbonate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the room-temperature ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide by dielectric relaxation spectroscopy over the frequency range 0.2 GHz ≤ ν ≤ 89 GHz has revealed that, in addition to the already known lower frequency processes, there is a broad featureless dielectric loss at higher frequencies. The latter is probably due to the translational (oscillatory) motions of the dipolar ions of the IL relative to each other, with additional contributions from their fast rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dielectric properties of conducting polymer composites containing polypyrrole (PPy) crushed films, PPy powder, polyaniline (PAn) base and acid powders as the dispersants and silicone rubber and vinyl ester as matrix materials have been investigated in the frequency range 2-18 GHz. The dielectric parameters such as the real part, epsiprime, and imaginary part, epsiPrime, of the permittivity and loss tangent, tandelta, increase with increasing conductivity and concentration of the dispersant. The geometrical shape of the dispersant governs the ability of conductive network formation which is indicated by a large drop in the resistivity of the composite. Also, dispersant/matrix interactions and physical properties of the matrix influence the agglomeration of the dispersant phase which, in turn, affects the dielectric properties of the composites. Flakes of PPy obtained by crushing highly conductive films and large PAn powder aggregates were unable to form a conducting network. The composites without a network of dispersant exhibit low dielectric parameters. On the other hand, high values of tan delta ranging from 0.7–1.1 were achieved for the PPy powder (15 parts)/silicone rubber composites where a conducting network was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the preliminary results of our work in detecting respiration using Doppler Radar in the 2.7 GHz operating band. We demonstrate the capability of Doppler Radar in capturing breathing patterns under various breathing forms such as normal breathing, fast breathing, as well as different rate of inhale and exhale. From the captured signals, respiration rate was obtained using Fast Fourier Transform and validated. The proposed approach could potentially be used in number of applications involving breathing rate and breathing pattern analysis via non-contact methods.