30 resultados para GENOMES

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many viruses carry more than one segment of nucleic acid into the virion particle, but retroviruses are the only known group of viruses that contain two identical (or nearly identical) copies of the RNA genome within the virion. These RNA genomes are non-covalently joined together through a process known as genomic RNA dimerization. Uniquely, the RNA dimerization of the retroviral genome is of crucial importance for efficient retroviral replication. In this article, our current understanding of the relationship between retroviral genome conformation, dimerization and replication is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviral recombination is thought to play an important role in the generation of immune escape and multiple drug resistance by shuffling pre-existing mutations in the viral population. Current estimates of HIV-1 recombination rates are derived from measurements within reporter gene sequences or genetically divergent HIV sequences. These measurements do not mimic the recombination occurring in vivo, between closely related genomes. Additionally, the methods used to measure recombination make a variety of assumptions about the underlying process, and often fail to account adequately for issues such as co-infection of cells or the possibility of multiple template switches between recombination sites. We have developed a HIV-1 marker system by making a small number of codon modifications in gag which allow recombination to be measured over various lengths between closely related viral genomes. We have developed statistical tools to measure recombination rates that can compensate for the possibility of multiple template switches. Our results show that when multiple template switches are ignored the error is substantial, particularly when recombination rates are high, or the genomic distance is large. We demonstrate that this system is applicable to other studies to accurately measure the recombination rate and show that recombination does not occur randomly within the HIV genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-coding copies of fragments of the mitochondrial genome translocated to the nucleus or pseudogenes are being found with increasing frequency in a diversity of organisms. As part of a study to evaluate the utility of a range of mitochondrial gene regions for population genetic and systematic studies of the Australian freshwater crayfish, Cherax destructor (the yabby), we report the first detection of Cytochrome b (Cyt b) pseudogenes in crustaceans. We amplified and sequenced fragments of the mitochondrial Cyt b gene from 14 individuals of C. destructor using polymerase chain reaction (PCR) with primers designed from conserved regions of Penaeus monodon and Drosophila melanogaster mitochondrial genomes. The phylogenetic tree produced from the amplified fragments using these primers showed a very different topology to the trees obtained from sequences from three other mitochondrial genes, suggesting one or more nuclear pseudogenes have been amplified. Supporting this conclusion, two highly divergent sequences were isolated from each of two single individuals, and a 2 base pair (bp) deletion in one sequence was observed. There was no evidence to support inadvertent amplification of parasite DNA or contamination of samples from other sources. These results add to other recent observations of pseudogenes suggesting the frequent transfer of mitochondrial DNA (mtDNA) genes to the nucleus and reinforces the necessity of great care in interpreting PCR-generated Cyt b sequences used in population or evolutionary studies in freshwater crayfish and crustaceans more generally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial fission requires the division of both the inner and outer mitochondrial membranes. Dynamin-related proteins operate in division of the outer membrane of probably all mitochondria, and also that of chloroplasts – organelles that have a bacterial origin like mitochondria. How the inner mitochondrial membrane divides is less well established. Homologues of the major bacterial division protein, FtsZ, are known to reside inside mitochondria of the chromophyte alga Mallomonas, a red alga, and the slime mould Dictyostelium discoideum, where these proteins are likely to act in division of the organelle. Mitochondrial FtsZ is, however, absent from the genomes of higher eukaryotes (animals, fungi, and plants), even though FtsZs are known to be essential for the division of probably all chloroplasts. To begin to understand why higher eukaryotes have lost mitochondrial FtsZ, we have sampled various diverse protists to determine which groups have retained the gene. Database searches and degenerate PCR uncovered genes for likely mitochondrial FtsZs from the glaucocystophyte Cyanophora paradoxa, the oomycete Phytophthora infestans, two haptophyte algae, and two diatoms – one being Thalassiosira pseudonana, the draft genome of which is now available. From Thalassiosira we also identified two chloroplast FtsZs, one of which appears to be undergoing a C-terminal shortening that may be common to many organellar FtsZs. Our data indicate that many protists still employ the FtsZ-based ancestral mitochondrial division mechanism, and that mitochondrial FtsZ has been lost numerous times in the evolution of eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian freshwater crayfish Cherax destructor (Crustacea: Decapoda: Parastacidae). The 15,895-bp genome is circular with the same gene composition as that found in other metazoans. However, we report a novel gene arrangement with respect to the putative arthropod ancestral gene order and all other arthropod mitochondrial genomes sequenced to date. It is apparent that 11 genes have been translocated (ND1, ND4, ND4L, Cyt b, srRNA, and tRNAs Ser(UGA), Leu(CUN), Ile, Cys, Pro, and Val), two of which have also undergone inversions (tRNAs Pro and Val). The ‘duplication/random loss’ mechanism is a plausible model for the observed translocations, while ‘intramitochondrial recombination’ may account for the gene inversions. In addition, the arrangement of rRNA genes is incompatible with current mitochondrial transcription models, and suggests that a different transcription mechanism may operate in C. destructor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian giant crab Pseudocarcinns gigas (Crustacea: Decapoda: Menippidae) and the giant freshwater shrimp Macrobrachium rosenbergii (Crustacea: Decapoda: Palaemonidae). The Pse gigas and Mrosenbergii mitochondrial genomes are circular molecules, 15,515 and 15,772 bp in length, respectively, and have the same gene composition as found in other metazoans. The gene arrangement of M. rosenbergii corresponds with that of the presumed ancestral arthropod gene order, represented by Limulus polyphemus, except for the position of the tRNALeu(UUR) gene. The Pse. gigas gene arrangement corresponds exactly with that reported for another brachyuran, Portunus trituberculatus, and differs from the M. rosenbergii gene order by only the position of the tRNAHis gene. Given the relative positions of intergenic nonoding nucleotides, the “duplication/random loss” model appears to be the most plausible mechanism for the translocation of this gene. These data represent the first caridean and only the second brachyuran complete mtDNA sequences, and a source of information that will facilitate surveys of intraspecific variation within these commercially important decapod species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological sequence assembly is an essential step for sequencing the genomes of organisms. Sequence assembly is very computing intensive especially for the large-scale sequence assembly. Parallel computing is an effective way to reduce the computing time and support the assembly for large amount of biological fragments. Euler sequence assembly algorithm is an innovative algorithm proposed recently. The advantage of this algorithm is that its computing complexity is polynomial and it provides a better solution to the notorious “repeat” problem. This paper introduces the parallelization of the Euler sequence assembly algorithm. All the Genome fragments generated by whole genome shotgun (WGS) will be assembled as a whole rather than dividing them into groups which may incurs errors due to the inaccurate group partition. The implemented system can be run on supercomputers, network of workstations or even network of PC computers. The experimental results have demonstrated the performance of our system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the emergence of non-coding miRNA has attracted biology and computer researchers. miRNA plays an important role in regulation of genes. Finding motifs in RNA is one of important topics. In our work, we attempt to find motifs in mature miRNA from combinations ranging from two to ten nucleotides. Interestingly, we have found several motifs only appear in mature miRNA but not appear in other regions of primary miRNA sequences taken from latest miRNA datasets. The findings of our investigation may help in the building model to predict all possible miRNAs in genomes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speciation, despite ongoing gene flow can be studied directly in nature in ring species that comprise two reproductively isolated populations connected by a chain or ring of intergrading populations. We applied three tiers of spatio-temporal analysis (phylogeny/historical biogeography, phylogeography and landscape/population genetics) to the data from mitochondrial and nuclear genomes of eastern Australian parrots of the Crimson Rosella Platycercus elegans complex to understand the history and present genetic structure of the ring they have long been considered to form. A ring speciation hypothesis does not explain the patterns we have observed in our data (e.g. multiple genetic discontinuities, discordance in genotypic and phenotypic assignments where terminal differentiates meet). However, we cannot reject that a continuous circular distribution has been involved in the group's history or indeed that one was formed through secondary contact at the 'ring's' east and west; however, we reject a simple ring-species hypothesis as traditionally applied, with secondary contact only at its east. We discuss alternative models involving historical allopatry of populations. We suggest that population expansion shown by population genetics parameters in one of these isolates was accompanied by geographical range expansion, secondary contact and hybridization on the eastern and western sides of the ring. Pleistocene landscape and sea-level and habitat changes then established the birds' current distributions and range disjunctions. Populations now show idiosyncratic patterns of selection and drift. We suggest that selection and drift now drive evolution in different populations within what has been considered the ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial new DNA data were obtained by sequencing the mitochondrial genomes of four crustacean species, resulting in the discovery of a novel gene order in freshwater crayfish. Investigation of evolutionary relationships using mitochondrial genomes challenged established theories of crustacean evolution and diversification in relation to the other major Arthropod groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of β-casein occurred in the monotreme lineage, as opposed to more ancient duplications of α-casein in the eutherian lineage, while marsupials possess only single copies of α- and β-caseins. Despite this variability, the close proximity of the main α- and β-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project focusses on the discovery of conserved DNA sequences in bacterial genomes and comparative analysis of bacterial genomes to elicit evolutionary trends. The outcomes have produced novel techniques for modelling motifs in DNA and the characterisation of evolutionary processes in medically significant bacterial pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a new computational method for guanine (G) and cytosine (C), or GC, content profiling based on the idea of multiple resolution sampling (MRS). The benefit of our new approach over existing techniques follows from its ability to locate significant regions without prior knowledge of the sequence, nor the features being sought. The use of MRS has provided novel insights into bacterial genome composition. Key findings include those that are related to the core composition of bacterial genomes, to the identification of large genomic islands (in Enterobacterial genomes), and to the identification of surface protein determinants in human pathogenic organisms (e.g., Staphylococcus genomes). We observed that bacterial surface binding proteins maintain abnormal GC content, potentially pointing to a viral origin. This study has demonstrated that GC content holds a high informational worth and hints at many underlying evolutionary processes. For online Supplementary Material, see www.liebertonline.com.