24 resultados para GAAS SINGLE-CRYSTALS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High purity Al single crystals of the (011)[011] orientation have been deformed in plane strain compression in a channel die. Deformation was carried out at a strain rate of 0.01 s−1 to true strains of 0.5 and 1.0, and at temperatures of 25, 200 and 300 °C. The as-deformed microstructure has been characterized using electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). No recrystallization was detected after deformation, and the deformation texture analysis showed that the stability of the orientation decreased with increasing temperature, contrary to reports for other orientations.

Annealing was carried out for various times at 300 °C. Nucleation of recrystallization exhibited periodicity, with distinct bands of recrystallized grains forming parallel to the transverse direction. This recrystallized microstructure has been examined using EBSD. A model is proposed to account for the origin of the periodicity of nucleation and the retention of rods or cylinders of unrecrystallized material after significant annealing times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High purity Al single crystals of the Cube (0 0 1)[1 0 0] and rotated Cube (0 1 1)[0 1 ¯ 1] orientations have been deformed in plane strain compression in a channel die. Deformation was carried out at temperatures between 25 and 600 8C up to strains of 1.2. The as-deformed microstructure has been characterised using electron microscopy and electron backscattered diffraction (EBSD).
Annealing was carried out for various times and temperatures. The recrystallized microstructure has been studied using electron microscopy, and the orientation of recrystallized grains determined using EBSD. After cold deformation and annealing both orientations exhibited a random recrystallization texture component. After hot deformation both orientations retained a similar annealing texture to their starting deformation texture. The annealing texture of deformed single crystals was found to be more sensitive to the temperature of deformation than the stability of the orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deformation behaviour of magnesium single crystals under plane strain conditions has been examined using molecular dynamics modelling. The simulations were based on an existing atomic potential for magnesium taken from the literature. A strain of 10% was applied at rates of 3x109s-1 and 3x107s-1. The simulations predicted the formation of mechanical twins that accommodated extension in the c-axis direction of the hexagonal unit cell. However, the predicted twin is not of the same kind found in magnesium, but is that commonly observed in titanium. It is believed that further analysis of the physical properties predicted by this interatomic potential will shed more light on the atomic processes controlling twinning in Magnesium alloys. It also highlights the need for improvements to the interatomic potential such that more accurate deformation behaviour can be attained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion behavior of magnesium single crystals with various crystallographic orientations was examined in this study. To identify the effects of surface orientation on the corrosion behavior in a systematic manner, single-crystal specimens with ten different rotation angles of the plane normal from the [0001] direction to the [1010] direction at intervals of 10° were prepared and subjected to potentiodynamic polarization and potentiostatic tests as well as electrochemical impedance spectroscopy (EIS) measurements in 3.5 wt.% NaCl solution. Potentiodynamic polarization results showed that the pitting potential (E pit) first decreased from −1.57 V SCE to −1.64 V SCE with an increase in the rotation angle from 0° to 40°, and then increased to −1.60 V SCE with a further increase in the rotation angle to 90°. The results obtained from potentiostatic tests are also in agreement with the trend in potentiodynamic polarization tests as a function of rotation angle. A similar trend was also observed for the depressed semicircle and the total resistances in the EIS measurements due to the facile formation of MgO and Mg(OH)2 passive films on the magnesium surface. In addition, the amount of chloride in the passive film was found first to increase with an increase in rotation angle from 0° to 40°, then decrease with a further increase in rotation angle, indicating that the tendency to form a more protective passive film increased for rotation angle near 0° [the (0001) plane] or 90° [the (1010) plane].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the strain rate effect on single crystal of aluminum (99.999% purity), aluminum single crystals are fabricated and subjected to uniaxial compression loading at quasi-static and dynamic strain rates, i.e., from 10-4 s-1 to 1000 s-1. The orientation dependence is also investigated with single slip or multi slip. The stress-strain curves of pure Al single crystals along two orientations and at different strain rates are obtained after measuring initial orientation using the Laue Back-Reflection technique. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used to simulate the deformations along two orientations under various strain-rates. The classical and two newly developed single crystal plasticity models are used in the investigation. The simulation results of these models are compared to experimental results in order to study their abilities to predict finite plastic deformation of single crystalline metal over a wide strain rate range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single-crystal trigonal (t) Se nanobelts have been synthesized on a large scale by reducing SeO2 with glucose at 160 °C. Electron microscopy images show that the nanobelts are 80 nm in diameter, 25 nm in thickness, and up to several hundreds of micrometers in length. HRTEM images prove that the nanobelts are single crystals and preferentially grow along the [001] direction. The time-dependent TEM images revealed that the formation and growth of t-Se nanobelts were governed by a solid−solution−solid growth mechanism. The redox reaction directly produced amorphous (α) Se nanoparticles under hydrothermal conditions. t-Se nanobelts were formed by dissolution and recrystallization of the initial α-Se nanoparticles under the functional capping of poly(vinylpyrrolidone) (PVP). The nanobelts obtained exhibit a quantum size effect in optical properties, showing a blue shift of the band gap and direct transitions relative to the values of bulk t-Se.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ideal starting condition for selective growth experiments is one having a layer of randomly-oriented nuclei adjacent to a matrix with negligible orientational variation but sufficient stored energy to promote growth. In practice, cutting or deformation processes are used in an attempt to approximate these ideal conditions, but the degree to which this is achieved has not been rigorously quantified. In this work, Fe-3wt%Si single crystals were cut or deformed using six different processes. The variation in texture with distance from the cut or deformed surface was measured using electron backscatter diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM) in order to assess the ability of each process to create conditions suitable for selective growth experiments. While grooving with a machine tool produced the best spread of orientations at the cut surface, the suitability of this process is diminished by the presence of a differently-textured deformed layer between the cut surface and the single crystal matrix. Grinding produced a less ideal distribution of orientations at the cut surface, but the presence of these orientations in a very thin layer adjacent to the matrix makes this process preferable for preparing crystals for selective growth experiments, provided the results are corrected for the deviation in the distribution of nuclei orientations from a random distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a novel method to grow ordered layers of monodisperse colloids on a flat substrate. The evaporation of the colloidal suspension in the presence of the inclined substrate is strengthened by an external gas flux directed on the meniscus. The meniscus oscillations caused by the gas flux have an evident effect on the ordering of the spheres on the substrate. Thick films (more than 150 layers in a single-step deposition) of large area single crystals (1 cm2) can be obtained in a very short time (~1 cm/h maximum growth rate) and from very diluted suspensions (up to 0.022% volume fraction).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO quantum dots were synthesized via a low-temperature solvothermal process without using surfactants. Heat treatment of ZnCl2 and NaOH solutions in tetra-ethylene glycol at 140°C led to the formation of spherical ZnO nanoparticles consisting of the aggregates of uniform-sized quantum dots. The particle size and morphology were characterized using transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Brunauer–Emmett–Teller gas absorption measurements. It was found that the quantum dots in the particles were single crystals of ZnO of ∼5 nm in diameter having the wurtzite structure. The quantum dots showed quantum size effects even in the agglomerated form. The growth mechanism of this new type of ZnO nanoparticles is proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactions of CeCl3·7H2O and Ce(NO3)3·6H2O with Naacac or NH4acac in aqueous solution at 21 and 45 °C yielded the trihydrate [Ce(acac)3(H2O)2]·H2O and the dihydrate [Ce(acac)3(H2O)2], respectively, whereas similar treatment of (NH4)2[Ce(NO3)6] gave the trihydrate at both temperatures. Desiccation of the hydrates over silica gel left the dihydrate unchanged, whereas the trihydrate underwent decomposition rather than dehydration. Aerial oxidation of [Ce(acac)3(H2O)2] in CH2Cl2 and toluene yielded α-[Ce(acac)4] and β-[Ce(acac)4], respectively, the structure of the former being re-determined with improved precision. Careful treatment of aqueous (NH4)4[Ce(SO4)4] and Hacac (initially pH 1–2) with aqueous ammonia to pH 5 precipitated hydrated [Ce(acac)4], from which [Ce(acac)4]·10H2O was isolated as unstable, light-sensitive single crystals, and the structure was determined. The complex is a laminar clathrate containing layers of Ce(acac)4 molecules sandwiched between extensive hydrogen-bonded layers of water molecules which do not interact with the metal. Electrochemical experiments confirmed the unstable nature of hydrated CeIII(acac)3, while the reduction of [Ce(acac)4] yielded well-defined cyclic voltammograms in acetonitrile and acetone, corresponding to a quasi-reversible process. For the [CeIV(acac)4]/[CeIII(acac)4]redox couple, a calculated reversible potential of 0.22±0.02 V versus SHE was obtained in acetone or acetonitrile (0.1 M Bu4NPF6) at both gold and glassy carbon electrodes. This potential is consistent with the ease of both oxidation and reduction of cerium acetylacetonate complexes as found in the synthetic studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A microstructural characterisation of the family of N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts was carried out by observation of powder surface morphologies with the aim of extending the microstructure-property correlation. Inherent difficulties limiting extensive studies of organic solids by SEM, including volatility under vacuum, charging due to electron beam irradiation, and air-sensitivity were overcome with the use of a Field Emission SEM and cryostage attachment. This technique, providing considerable improvements in image quality at low accelerating voltages, enabled direct observation of complex microstructural features in samples exhibiting high temperature plastic crystalline phases (N,N-dimethylpyrrolidinium tetrafluoroborate [P11BF4]; N-methyl-N-ethylpyrrolidinium tetrafluoroborate [P12BF4]; N-methyl-N-propylpyrrolidinium tetrafluoroborate [P13BF4]). Extensive lattice imperfections including grain boundaries, slip planes and dislocation pits were observed within particles of approximately 200 mgrm diameter. The N-methyl-N-butylpyrrolidinium tetrafluoroborate (P14BF4) sample in this series revealed columnar single crystals with high aspect ratios. The origin of plastic flow properties is discussed using single crystal and polycrystalline slip observations and a relationship proposed between defect characteristics and transport properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The alloy Ni-Mn-Ga aroused great interest for application as a magnetic shape memory (MSM) material. This effect is caused by reorientation of twin variants by an external magnetic field. So far, most of the experiments were concentrated on single crystals. But, the MSM effect can also be realised in polycrystals which can be prepared much more efficiently. Here, polycrystalline samples were prepared by directional solidification with a <100> fibre texture of the high temperature cubic austenitic phase parallel to the heat flow. Afterwards, a heat treatment was applied for chemical homogenisation and stress relaxation in the austenitic state. Then the samples were heated up to the austenitic state and cooled down under load. The microstructure was analysed by Electron Back Scatter Diffraction (EBSD) before and after that treatment. Mechanical training at room temperature and 40°C was tracked by recording stress-strain curves. By increasing the number of training cycles the strain also increases. The influence of different training temperatures was investigated on samples with different grain sizes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mg-Zn binary alloys with concentrations between 0 and 2.8wt% Zn have been prepared and processed via hot rolling and annealing to produce specimens with a strong basal texture and a range of grain sizes. These have been deformed in tension, a condition in which the deformation is dominated by prismatic slip. This data has been used to assess the Hall-Petch parameter as a function of Zn concentration for deformation dominated by prismatic slip. Pure magnesium showed non-linear Hall-Petch behaviour at large grain sizes, and this is compared to the values for prismatic slip measured on single crystals. The differences between critical resolved shear stress measurements made through single crystal, polycrystal and mathematical modelling techniques are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study is dedicated to the quantification of latent hardening and its effect on the plasticity of pure hexagonal magnesium. To this end, discrete dislocation dynamics simulations are used to (1) extract latent hardening parameters coupling different slip systems, and to (2) assess the validity of two existing constitutive models linking slip system strength to dislocation densities on all slip systems. As hexagonal materials deform via activation of different slip modes, each with different mobilities and lattice friction stress, the effects of the latter on latent hardening evolution are also investigated. It is found that the multi-slip formulation proposed by Franciosi and Zaoui gives accurate predictions when multiple interactions are involved while the formulation suggested by Lavrentev and Pokhil systematically overestimates the flow stress. Similar to FCC materials, it is also found that collinear interactions potentially contribute the most to latent hardening. Basal/pyramidal c + a interactions are found to be very strong, while interactions involving second-order pyramidal c + a primary dislocations appear to be the weakest ones. Finally, the latent hardening parameters, extracted from the discrete dislocation dynamics simulations, are used in polycrystal simulations and the impact of finely accounting for latent hardening on predictions of the macroscopic anisotropic response is shown to be of significant importance.