4 resultados para Foreland

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Late Caledonian to Early Hercynian North Qilian orogenic belt in northwestern China is an elongate tectonic unit situated between the North China plate in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to Late Silurian shallow marine to tidal flat deposits and the Early and Middle Devonian terrestrial molasse are developed along the corridor Nanshan. The shallowing-upward succession from subabyssal flysch, shallow marine, tidal flat to terrestrial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stage during the Silurian and Devonian time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sydney Basin is located in the eastern part of Australia, Lachlan Fold Belt, and between the New England Fold Belt. From the Sydney basin at the end of the Late Carboniferous to Middle Triassic experienced back-arc spreading to the foreland basin at different stages: back-arc spreading stage (Carboniferous ), A passive thermal subsidence stage (early in the Permian Berry) and load deflection extruding stage (in Broughton Permian - Triassic). This time at the Sydney basin on the eastern side of the New England Fold Belt for the island Background of the arc. As a result, back-arc in the Permian Basin of the South Sydney basin by the back-arc spreading the eastern side of the arc and trench subduction before the impact of strong seismic activity, the development of a series of earthquake-related seismites to form various types and Seismic activity related to the deformation of soft sediment structure. Permian Basin, South Sydney's soft sediment deformation including cracks in shock-fold, liquefied vein, volcanic sand, load structure, flame Construction, pillow-like structure, spherical structure, pillow Layer structure slump, and so breccia. To which the cracks in shock-fold fibrillation is a direct result of earthquake faults and folds; pillow is a layer of sand caused by the earthquake fibrillation dehydration, the formation of the sinking; liquefied vein, Volcanic sand for the liquefaction of sand penetration of the formation of earthquake fissures formed; load structure, flame Construction, pillow-like structure, spherical structure is affected by the earthquake fibrillation in the sand, mudstone interface because of the sinking sand, mud layer formed through ; Slump structures and breccia of the earthquake was caused by the gravitational collapse or the formation of the debris flow. Fissures, earthquake-fold, liquefied vein, volcanic sand, load structure, flame Construction, pillow-like structure, spherical structure, pillow-like layer Equivalent to the original earthquake rocks the plot, and the slump structures and breccia of the plot belong to different earthquake rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The latest Carboniferous to Triassic Sydney-Gunnedah-Bowen Basin System in the eastern Australia is an elongate structural basin that locates between the Lachlan Caledonian Fold Belt in the west and the New England Fold Belt in the east. Extending from the Gunnedah district in the north to the Batemans Bay in the south, the Sydney Basin is a subbasin located in the southern part of the Sydney-Gunnedah-Bowen Basin System. The Permian in Sydney Basin consists of sedimentary sequences of fluvial, delta, littoral and shallow marine environments, as well as volcanic rocks. In the southwest of southern Sydney Basin, the Permian unconformably onlaps the highly deformed and metamorphosed Lachlan Fold Belts. The Permian System from the southern Sydney Basin comprises the Lower Permian Tallaterang Group (consisting of Clyde Coal Measures and Wasp Head Formation), Shoalhaven Group ( consisting of the Lower Permian Yadboro & Tallong Conglomerate, Yarrunga Coal Measures, Pebbly Beach Formation, Snapper Point Formation and the Middle Permian Wandrawandian Siltstone, Nowra Sandstone, Berry Siltstone and Broughton Formation) and the Upper Permian Illwarra Coal Measures. From the latest Carboniferous to the Middle Triassic, the SydneyBowen Basin had experienced different tectonic phases from a back-arc extensional regime to a typical foreland basin: a back-arc extensional phase, a passive thermal sag phase and a flexural loading and increased compressional phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sydney-Bowen basin in eastern Australia is an elongate back arc-converted foreland basin system situated between the Lachlan Fold Belt in the west and the New England Fold Belt in the east. The Middle Permian Wandrawandian Siltstone at Warden Head near Ulladulla in the southern Sydney Basin is dominated by fossiliferous siltstone and mudstone, with a large amount of dropstones and minor pebbly sandstone beds. Two general types of deposits are recognized from the siltstone unit in view of the timing and mechanism of formation. One is represented by the primary deposits from offshore to subtidal environments with abundant dropstones of glacial marine origin. The second type is distinguished by secondary, soft-sediment deformational deposits and structures, and comprises three layers of mudstone dykes of seismic origin. In the latter type, metre scale, laterally extensive syn-depositional slump deformation structures occur in the middle part of the Wandrawandian Siltstone. The deformation structures vary in morphol-ogy and pattern, including large-scale complex-type folds, flexural stratification, concave-up structures, faulting of small displacements accompanied by folding and brecciation. The slumps and associated syn-sedimentary structures are attributed to penecontemporaneous deformations of soft sediments (mostly silty mud) formed as a result of mass movement of unconsolidated and/or semi-consolidated substrate following an earthquake event. The occurrence of the earthquake event deposits supports the current view that the Sydney Basin was located in a back-arc setting near the New England magmatic arc on an active continental margin during the Middle Permian.