6 resultados para Force plate

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study assessed the validity of a tri-axial accelerometer worn on the upper body to estimate peak forces during running and change-of-direction tasks. Seventeen participants completed four different running and change-of-direction tasks (0°, 45°, 90°, and 180°; five trials per condition). Peak crania-caudal and resultant acceleration was converted to force and compared against peak force plate ground reaction force (GRF) in two formats (raw and smoothed). The resultant smoothed (10 Hz) and crania-caudal raw (except 180°) accelerometer values were not significantly different to resultant and vertical GRF for all running and change-of-direction tasks, respectively. Resultant accelerometer measures showed no to strong significant correlations (r = 0.00–0.76) and moderate to large measurement errors (coefficient of variation [CV] = 11.7–23.9%). Crania-caudal accelerometer measures showed small to moderate correlations (r = − 0.26 to 0.39) and moderate to large measurement errors (CV = 15.0–20.6%). Accelerometers, within integrated micro-technology tracking devices and worn on the upper body, can provide a relative measure of peak impact force experienced during running and two change-of-direction tasks (45° and 90°) provided that resultant smoothed values are used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lateral ankle sprain (LAS) is one of the most common injuries incurred during sporting activities, and effective rehabilitation programs for this condition are challenging to develop. The purpose of this research was to compare the effect of 6 weeks of balance training on either a mini-trampoline or a dura disc on postural sway and to determine if the mini-trampoline or the dura disc is more effective in improving postural sway. Twenty subjects (11 men, 9 women) with a mean age of 25.4 ± 4.2 years were randomly allocated into a control group, a dura disc training (DT) group, or a mini-trampoline (MT) group. Subjects completed 6 weeks of balance training. Postural sway was measured by subjects performing a single limb stance on a force plate. The disbursement of the center of pressure was obtained from the force plate in the medial-lateral and the anterior-posterior sway path and was subsequently used for pretest and posttest analysis. After the 6-week training intervention, there was a significant (p < 0.05) difference in postural sway between pre- and posttesting for both the MT (pretest = 56.8 ± 20.5 mm, posttest = 33.3 ± 8.5 mm) and DT (pretest = 41.3 ± 2.6 mm, posttest = 27.2 ± 4.8 mm) groups. There was no significant (p > 0.05) difference detected for improvements between the MT and DT groups. These results indicate that not only is the mini-trampoline an effective tool for improving balance after LAS, but it is equally as effective as the dura disc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to compare three calculation methods to determine the load that maximises power output in the power clean. Five male athletes (height=179.8 10.5cms, weight 91 .8 8.8kg, power dean 1RM = 117.0 20.5kg) performed two per cleans at 10% increments from 50% to 100% of 1RM. Bar displacement data was collected using a Ballistic Measurement System (BMS) and vertical ground reaction force (VGRF) data was measured by a Kistler 9287B Force Plate. Power output was calculated for BMS (system mass), BMS (bar mass) and VGRF/BMS system mass. Optimal load was determined to be 70% for the BMS (system mass) and VGRF BMS (system mass) methods and 90% for the BMS (bar mass) method. Sports scientists should be aware of the technical issues underlying these findings due to the practical ramifications for athlete testing and training.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ground hardness is deemed an important consideration for player safety for sports played on natural turf surfaces. Currently, a ground hardness measure is being determined using a Clegg hammer, with the suitability for play dependent on an acceptable reading. This study aimed to examine whether a relationship between Clegg hammer readings and ground reaction forces (GRF’s) generated by a human during a drop landing exist. Fifteen male community level Australian football players were recruited for the study. Participants performed a single leg drop landing on the right leg from a 45cm box onto the force plate to record GRF’s. Ten trials were conducted for three conditions: no shock pad, thin shock pad (15mm) and thick shock pad (50mm) under a synthetic turf sample. Four consecutive Clegg hammer readings were recorded following each set of ten trials. Variables of interest were maximum vertical GRF (Max vGRF), maximum rate of loading (Max RoL) and Clegg hammer (CH) readings. Pearson’s Correlation Coefficient was conducted to examine the relationship between variables and conditions. Slight to fair relationships were found between the Max vGRF and any of the four CH drops (0.181 ≤r≥ 0.189; p ≤ 0.01). This finding was similar to the relationship with Max RoL (0.209 ≤r≥ 0.217; p ≤ 0.01). When analysed for the specific shock pad condition, the relationships remained poor (r <0.1; p ≥ 0.29), with the exception of the Max RoL and the CH readings on the thick shock pad (0.1 ≤r≥ 0.2; p ≥ 0.03). The results of this study show that the ground reaction forces experienced by a human on different levels of surface hardness are significantly different to the forces on impact of the Clegg hammer. Consequently, the Clegg hammer may not be the most appropriate device for relating surface hardness to player safety, thus it is possible that the Clegg hammer alone is insufficient in globally determining ground safety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Balance training is commonly used in the rehabilitation process of ankle injuries; however, the exercise prescription guidelines for prescribing balance training are poorly understood. The aim of the present study was to determine if high or low volume balance training is more effective in improving postural sway after an 8 week balance training program utilising the same exercises. Seventeen subjects (14 male, 3 female) with a mean age of 24.06 ± 5.6 years were randomly allocated into a control group (CG), low volume training (LVT) or high volume training (HVT). All subjects had sustained at least two inversion ankle injuries within the last 18 months. Subjects completed 8 weeks of balance training of up to 30 mins duration, 3 times per week. LVT consisted of 40 repetitions for week 1, progressing to 90 repetitions by week 8. HVT consisted of 60 repetitions for week 1, progressing to 130 repetitions by week 8. The maximum centre of pressure (COP) excursion was obtained from the porce plate in the medial-lateral (ML) direction and subsequently used for pre-test and post-test analysis. After the 8 week training intervention, there was a significant (P<0.001) difference in postural sway between pre and post testing for both the LVT (pre = 88.69mm ± 25.08mm, post = 72.17mm ± 27.53mm) and HVT (pre = 77.47mm ±10.57mm, post = 58.54mm ± 7.01mm) groups. There was no significant (P>0.01) difference detected for improvements between the LVT and HVT, however reported effect sizes (ES) showed large effect size chances in the high volume training (ES = 1.7) whereas low volume training showed medium effect sizes changes (ES = 0.6). This preliminary study demonstrates the importance of training volume in the rehabilitation of ankle injuries, with the HVT being superior to LVT.