4 resultados para Foam Stability

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein was isolated from Australian chia seeds and converted to powders using spray, freeze and vacuum drying methods, to investigate the effect of drying methods on physicochemical and functional attributes of chia-seed protein isolate (CPI). It was found that there was no significant difference in the proximate composition; however vacuum dried CPI (VDCPI) had the highest bulk density and oil absorption capacity, whereas spray dried powder (SDCPI) demonstrated the highest solubility, water absorption capacity and lowest surface hydrophobicity. Solubility of all powders was higher at elevated temperature and alkaline pH. Foaming capacity and foam stability of CPI were found to increase with increasing pH and protein concentration. SDCPI was the least denatured and VDCPI the most denatured, demonstrating the poorest solubility and foaming properties of the latter. These findings are expected to be useful in selection of a drying process to yield chia seed protein powders with more desirable functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Film thinning experiments have been conducted with aqueous films between two air phases in a thin film pressure balance. The films are free of added surfactant but simple NaCl electrolyte is added in some experiments. Initially the experiments begin with a comparatively large volume of water in a cylindrical capillary tube a few millimeters in diameter, and by withdrawing water from the center of the tube the two bounding menisci are drawn together at a prescribed rate. Thismodels two air bubbles approaching at a controlled speed. In pure water, the results show three regimes of behavior depending on the approach speed; at slow speed (<1 μm/s) it is possible to form a flat film of pure water, ∼100 nm thick, that is stabilized indefinitely by disjoining pressure due to repulsive double-layer interactions between naturally charged air/water interfaces. The data are consistent with a surface potential of -57mV on the bubble surfaces. At intermediate approach speed (∼1-150 μm/s), the films are transiently stable due to hydrodynamic drainage effects, and bubble coalescence is delayed by ∼10-100 s. At approach speeds greater than ∼150 μm/s, the hydrodynamic resistance appears to become negligible, and the bubbles coalesce without any measurable delay. Explanations for these observations are presented that take into account Derjaguin-Landau-Verwey-Overbeek and Marangoni effects entering through disjoining pressure, surface mobility, and hydrodynamic flow regimes in thin film drainage. In particular, it is argued that the dramatic reduction in hydrodynamic resistance is a transition from viscosity-controlled drainage to inertia-controlled drainage associated with a change from immobile to mobile air/water interfaces on increasing the speed of approach of two bubbles. A simple model is developed that accounts for the boundaries between different film stability or coalescence regimes. Predictions of the model are consistent with the data, and the effects of adding electrolyte can be explained. In particular, addition of electrolyte at high concentration inhibits the near-instantaneous coalescence phenomenon, thereby contributing to increased foam film stability at high approach speeds, as reported in previous literature. This work highlights the significance of bubble approach speed as well as electrolyte concentration in affecting bubble coalescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-performance reduced graphene oxide/nickel foam (rGO/NF) composite electrodes for high-performance supercapacitors were prepared by flame-induced reduction of dry graphene oxide (GO) coated on nickel foam. Flame reduction of GO is a facile, feasible and cost-effective reduction technique, which is conducted without the need of any reductant. Most importantly, the rGO obtained by flame reduction showed a typical disordered cross-linking network and randomly distributed pores, which provide accessible routes for fast transportation of ions. It was demonstrated that the rGO/NF electrode with embedded current collector (NF) exhibited better electrochemical performance than conventional rGO film counterparts, including a high gravimetric specific capacitance of 228.6 F g-1 at a current density of 1 A g-1, excellent rate capability (over 81% retention at 32 A g-1) and high cycling stability with only 5.3% capacitance decay over 10,000 cycles of cyclic voltammetry at a ultrahigh scan rate of 1000 mV s-1. This facile method for the fabrication of rGO/NF electrodes could envision enormous potential for high performance energy storage devices.