2 resultados para Fluorodeoxyglucose F18

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with 123I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci.
Methods We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation.
Results The 6-h IDEX scan (92%; κappa=0.83, p=0.003) was superior to the 0-h (36%; kappa=0.01, p>0.05), 3-h (55%;κappa=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; κappa=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy.
Conclusion The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant minority of patients undergoing surgery for medically refractory non-lesional temporal lobe epilepsy (TLE) continue to have seizures, but the reasons for this are uncertain. Fluorodeoxyglucose (FDG) PET shows hypometabolism in a majority of patients with non-lesional TLE, even in the absence of hippocampal atrophy. We examined whether the extent of resection of the area of FDG-PET hypometabolism influenced outcome following surgery for non-lesional TLE. Twenty-six patients who underwent temporal lobectomy for medically refractory TLE with at least 12 months follow-up were studied. The preoperative FDG-PET was compared with 20 non-epileptic controls using SPM99 to identify regions of significant hypometabolism (P < 0.0005, cluster > 200). This image was then co-registered to the postoperative MRI scan. The volume of the FDG-PET hypometabolism that lay within the area of the resected temporal lobe was calculated. The volume of temporal lobe resected was also calculated. Patients with a good outcome had a greater proportion of the total FDG-PET hypometabolism volume resected than those with a poor outcome (24.1% versus 11.8%, P = 0.02). There was no significant difference between the groups in the volume of temporal lobe resected (P = 0.86). Multivariate regression demonstrated that the extent of resection of the hypometabolism significantly correlated with outcome (P = 0.03), independent of the presence of hippocampal sclerosis (P = 0.03) and total brain volume of hypometabolism (P = 0.45).

The extent of resection of the region of hypometabolism on the preoperative FDG-PET is predictive of outcome following surgery for non-lesional TLE. Strategies that tailor resection extent to regional hypometabolism may warrant further evaluation.