2 resultados para Florida Coastal Everglades

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased recognition of the global importance of salt marshes as 'blue carbon' (C) sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2) if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora) sediment C levels following seagrass (Thallasiatestudinum) wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA), we recorded 296 patches (7.5 ± 2.3 m(2) mean area ± SE) of vegetation loss (aged 3-12 months) in a salt marsh meadow the size of a soccer field (7 275 m(2)). Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth) were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh) biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine pathogens of the genus Labyrinthula have been identified as the cause of wasting disease in seagrass systems in both temperate and subtropical regions. An understanding of the association between environmental factors and the prevalence of wasting disease in seagrass meadows is important for elucidating plant-pathogen interactions in coastal environments. We conducted a survey of 7 turtle grass-dominated beds within the Florida Keys National Marine Sanctuary to assess the relationship between environmental and biological parameters on seagrass health. All sites contained Labyrinthula spp.; the most pathogenic strain was obtained from an anthropogenically impacted site. Leaf and total biomass, in addition to root/rhizome carbon content, canopy light and % light transmitted, all displayed strong negative correlations with a wasting index (WI). It was noted that many of the same environmental measurements that showed negative correlations with WI also displayed strong positive correlations with canopy light levels. These data suggest that light availability may be an important factor that has previously been understated in the seagrass disease literature yet warrants more attention with respect to turtle grass susceptibility to infection. Studies such as this are important because they identify gaps in our understanding of plant-pathogen interactions in subtropical marine ecosystems. Furthermore, the relationships identified in this study may offer insight into which factors are most useful in identifying "at-risk" meadows prior to the onset of larger scale die-off events.