3 resultados para Flexural wave

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Round timbers are extensively used as utility poles in Australia for electricity distribution and communication. Lack of information on their conditions results in great difficulties on asset management for industries. Despite the development of various non-destructive testing (NDT) techniques for evaluating the condition of piles, few NDTs are reported for applications on timber poles. This paper addresses challenges and issues on development of NDTs for condition assessment and embedded length of timber poles. For this paper, it is mainly focusing on determining the embedded length of the pole considering loss of the sufficient embedment length is a main factor compromising capacity and safety of timber poles. Since it is impractical for generating longitudinal waves by impacting from the top of poles, utilizing flexural wave from side impact on poles becomes attractive. However, the flexural wave is known by its highly dispersive nature. In this paper, one dimensional wave theory, guided wave theory and advanced signal processing techniques have been introduced in order to provide a solution for the problem. Two signal processing techniques, namely short kernel method and continuous wavelet transform, have been investigated for processing flexural wave signals to evaluate wave velocity and embedment length of timber poles in service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low strain integrity testing is commonly used to assess the in situ condition of the poles or piles. For poles, it is important to calculate the embedment length and location of damage which is highly influenced by the accurate determination of the wave velocity. In general, depending on impact location and orientation, both longitudinal and bending waves may generate inside the pole, and these two waves have very distinct characteristics and wave velocity. These differences are even more prominent in the low frequency which is usually induced in the low strain non-destructive testing. Consequently, it will be useful if these two waves can be separated for the condition assessment of the poles. In this paper, a numerical analysis is performed on a pole considering that both waves are generated, and a method is proposed to differentiate these two waves based on an appropriate sensor arrangement that includes the location and the orientation of the sensors. Continuous wavelet transform is applied on the numerical signal to calculate the phase velocity of the waves and compared with analytical phase velocity curves. From the results, it can be seen that appropriate location and orientation of the sensors can separate the longitudinal and flexural waves as they match significantly well with the corresponding analytical phase velocity curves of these two waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guided wave (GW) has been used for many years in non-destructive testing (NDT). There are various ways to generate the guided wave, including impact or impulse either manually or using devices. Although the method of impact or impulse is considered to be simple and practical in guided wave generation, it produces waves with broadband frequencies, which often make analysis much more difficult. The frequency bandwidth produced by manual impacts is usually at the low end, and is therefore justified when dealing with one dimensional wave propagation assumption in low strain integrity testing of cylindrical structures. Under such assumption if the velocity is known accurately, NDTs can produce reasonably good results for the condition assessment of the structure. However, for guided wave propagation in timber pole-like structures, it is rather complicated as timber is an orthotropic material and wave propagation in an orthotropic medium exhibits different characteristics from that in isotropic medium. It is possible to obtain solutions for guided wave propagation in orthotropic media for cylindrical structures, even though the orthotropic material greatly complicates GW propagation. In this paper, timber has been considered as a transversely isotropic (i.e. simplified orthotropic) material and a comparative study of GW propagation in a timber pole is conducted considering isotropic and transversely isotropic modelling. Phase velocity, group velocity and attenuation are the main parameters for this comparative study. Moreover, tractionfree situation and embedded geotechnical condition are also taken into consideration to evaluate the effect of boundary. Displacement profile, wave propagation pattern and power flow at particular frequency are utilized to determine different displacement components of longitudinal and flexural waves along and across the timber pole. Effect of temperature and moisture content (in terms of modulus of elasticity) in timber pole is also compared to show the variation in phase velocity.