2 resultados para Fishery-independent

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

 Infectious pathogens figure prominently among those factors threatening marine wildlife. Mass mortality events caused by pathogens can fundamentally alter the structure of wild fish stocks and depress recruitment rates and yield. In the most severe instances, this can precipitate stock collapses resulting in dramatic economic losses to once valuable commercial fisheries. An outbreak of a herpes-like virus among commercially fished abalone populations in the south-west fishery of Victoria, Australia, during 2006-2007, has been associated with high mortality rates among all cohorts. Long-term records from fishery-independent surveys of blacklip abalone Haliotis rubra (Leach) enabled abundance from pre- and post-viral periods to be analysed to estimate stock density and biomass. The spatial distribution of abundance in relation to physical habitat variables derived from high-resolution bathymetric LiDAR data was investigated. Significant differences were observed in both measures between pre- and post-viral periods. Although there was some limited evidence of gradual stock improvement in recent years, disease-affected reefs have remained below productivity rates prior to the disease outbreak suggesting a reduction in larval availability or settlement success. This was corroborated by trends in sublegal sized blacklip abalone abundance that has yet to show substantial recovery post-disease. Abundance data were modelled as a function of habitat variables using a generalised additive model (GAM) and indicated that high abundance was associated with complex reef structures of coastal waters (<15 m). This study highlights the importance of long-term surveys to understand abalone recovery following mass mortality and the links between stock abundance and seafloor variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypothesis that heavy fishing pressure has led to changes in the biological characteristics of the estuary cobbler (Cnidoglanis macrocephalus) was tested in a large seasonally open estuary in southwestern Australia, where this species completes its life cycle and is the most valuable commercial fish species. Comparisons were made between seasonal data collected for this plotosid (eeltail catfish) in Wilson Inlet during 2005-08 and those recorded with the same fishery-independent sampling regime during 1987-89. These comparisons show that the proportions of larger and older individuals and the catch rates in the more recent period were far lower, i.e., they constituted reductions of 40% for fish ≥430 mm total length, 62% for fish ≥4 years of age, and 80% for catch rate. In addition, total mortality and fishing-induced mortality estimates increased by factors of ~2 and 2.5, respectively. The indications that the abundance and proportion of older C. macrocephalus declined between the two periods are consistent with the perception of long-term commercial fishermen and their shift toward using a smaller maximum gill net mesh to target this species. The sustained heavy fishing pressure on C. macrocephalus between 1987-89 and 2005-08 was accompanied by a marked reduction in length and age at maturity of this species. The shift in probabilistic maturation reaction norms toward smaller fish in 2005-08 and the lack of a conspicuous change in growth between the two periods indicate that the maturity changes were related to fishery-induced evolution rather than to compensatory responses to reduced fish densities.