53 resultados para Finite Element Methods

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability charts for soil slopes, first produced in the first half of the twentieth century, continue to be used extensively as design tools, and draw the attention of many investigators. This paper uses finite-element upper and lower bound limit analysis to assess the short-term stability of slopes in which the slopematerial and subgrade foundation material have two distinctly different undrained strengths. The stability charts are proposed, and the exact theoretical solutions are bracketed to within 4.2% or better. In addition, results from the limit-equilibrium method (LEM) have been used for comparison. Differences of up to 20% were found between the numerical limit analysis and LEM solutions. It also shown that the LEM sometimes leads to errors, although it is widely used in practice for slope stability assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an innovative surface treatment technique for metal alloys, with the great improvement of their fatigue, corrosion and wear resistance performance. Finite element method has been widely applied to simulate the LSP to provide the theoretically predictive assessment and optimally parametric design. In the current work, 3-D numerical modelling approaches, combining the explicit dynamic analysis, static equilibrium analysis algorithms and different plasticity models for the high strain rate exceeding 106s-1, are further developed. To verify the proposed methods, 3-D static and dynamic FEA of AA7075-T7351 rods subject to two-sided laser shock peening are performed using the FEA package–ABAQUS. The dynamic and residual stress fields, shock wave propagation and surface deformation of the treated metal from different material modelling approaches have a good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses the finite element upper and lower bound limit analysis to assess the stability of slopes mostly found in embankment cases where frictional materials are filled on purely cohesive undrained clay. For comparison purposes, the commonly used stability assessment method, limit equilibrium method (LEM) is also employed. The final results for both methods are then presented in the form of comprehensive chart solutions for the convenience of practicing engineers during preliminary slope designs. The failure mechanism will also be discussed in this paper. Ultimately, it should be noted that finite element limit analysis method holds the upper hand as its prior assumptions are not required. Thus, the obtained failure mechanism from the slope stability analysis will be more realistic. Hence, it will provide a better understanding for the slope failure surface. Therefore, engineers should design more carefully when the LEM is applied to the slopes with frictional materials filled on purely cohesive undrained clay. © 2014 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombotic stroke, which is caused by blood clot in the cerebral artery, is a major source of increased mortality and morbidity. Considering as efficient and fastest methods, mathematical approaches have gained significant importance for analyzing and understanding the biological events like thrombosis. This paper presents a computational model to analyze the effects of thrombosis using the theory of coupled fluid dynamics-structure interaction. The finite element method is used for the modeling of thrombosis (blood clot) of different stages in the middle cerebral artery with physiological compliance. The developed model is used to investigate the consequences that occur due to the various sizes of clots in the artery in the form of blood flow velocity, blood pressure, and artery wall stress. Such numerical assessment will facilitate better understanding of the biophysical process in case of thrombosis and thus would support medical practitioners to take faster curing steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timber is one of the most widely used structural material all over the world. Round timbers can be seen as a structural component in historical buildings, jetties, short span bridges and also as piles for foundation and poles for electrical and power distribution. To evaluate the current condition of these cylindrical type timber structures, guided wave has a great potential. However, the difficulties associated with the guided wave propagation in timber materials includes orthotropic behaviour of wood, moisture contents, temperature, grain direction, etc. In addition, the effect of fully or partially filled surrounding media, such as soil, water, etc. causes attenuation on the generated stress wave. In order to investigate the effects of these parameters on guided wave propagation, extensive numerical simulation is required to conduct parametric studies. Moreover, due to the presence of multi modes in guided wave propagation, dispersion curves are of great importance. Even though conventional finite element method (FEM) can determine dispersion curves along with wave propagation in time domain, it is highly computationally expensive. Furthermore, incorporating orthotropic behaviour and surrounding media to model a thick cylindrical wave (large diameter cylindrical structures) make conventional FEM inefficient for this purpose. In contrast, spectral finite element method (SFEM) is a semi analytical method to model the guided wave propagation which does not need fine meshes compared to the other methods, such as FEM or finite difference method (FDM). Also, even distribution of mass and stiffness of structures can be obtained with very few elements using SFEM. In this paper, the suitability of SFEM is investigated to model guided wave propagation through an orthotropic cylindrical waveguide with the presence of surrounding soil. Both the frequency domain analysis (dispersion curves) and time domain reconstruction for a multi-mode generated input signal are presented under different loading location. The dispersion curves obtained from SFEM are compared against analytical solution to verify its accuracy. Lastly, different numerical issues to solve for the dispersion curves and time domain results using SFEM are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friction is a critical factor for sheet metal forming (SMF). The Coulomb friction model is usually used in most finite element (FE) simulation for SMF. However, friction is a function of the local contact deformation conditions, such as local pressure, roughness and relative velocity. Frictional behaviour between contact surfaces can be based on three cases: boundary, hydrodynamic and mixed lubrication. In our microscopic friction model based on the finite element method (FEM), the case of dry contact between sheet and tool has been considered. In the view of microscopic geometry, roughness depends upon amplitude and wavelength of surface asperities of sheet and tool. The mean pressure applied on the surface differs from the pressure over the actual contact area. The effect of roughness (microscopic geometric condition) and relative speed of contact surfaces on friction coefficient was examined in the FE model for the microscopic friction behaviour. The analysis was performed using an explicit FE formulation. In this study, it was found that the roughness of deformable sheet decreases during sliding and the coefficient of friction increases with increasing roughness of contact surfaces. Also, the coefficient of friction increases with the increase of relative velocity and adhesive friction coefficient between contact surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous experimental studies have been carried out to investigate the collapse of tubular metallic crash structures under axial compression. Some simple theoretical models have been developed but these often assume one type of progressive collapse, which is not always representative of the real situation. Finite Element (FE) models, when further refined, have the potential to predict the actual collapse mode and how it influences the load-displacement and energy absorption characteristics. This paper describes an FE modelling investigation with the explicit code LS−DYNA. An automatic mesh generation programme written by the authors is used to set up shell and solid element tube models. Mesh specification issues and features relating to the contact and friction models are discussed in detail. The crush modes, load-deflection characteristics and energy absorption values found in the simulations are compared with a reasonable degree of correlation to those observed in a physical testing programme; however, improvements are still required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object-oriented finite element method (OOFEM) has attracted the attention of many researchers. Compared with the traditional finite element method, OOFEM software has the advantages of maintenance and reuse. Moreover, it is easier to expand the architecture to a distributed one. In this paper, we introduce a distributed architecture of a object-oriented finite element preprocessor. A comparison between the distributed system and the centralised system shows that the former, presented in the paper, greatly improves the performance of mesh generation. Other finite element analysis modules could be expanded according to this architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite Element Method (FEM) is widely used in Science and Engineering since 1960’s. The vast majority of FEM software is procedure-oriented. However, this conventional style of designing FEM software encounters problems in maintenance, reuse, and expansion of the software. Recently the object-oriented finite element method attracts the attention of lots of researchers, and now there is a growing interest in this method. In this paper, the object-oriented finite element (OOFE) is briefly introduced. Then the design and development of an integrated OOFE system is described. A comparison of the integrated OOFE system and a procedure-oriented system shows that our OOFE system has many advantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to improve the understanding of deformation of micro medical needle and thread during assembly and then to develop an economical and flexible deformation method. Therefore, the swaging process is computationally simulated with the finite element method in this paper. A commercially available explicit nonlinear finite element analysis code, LS-Dyna, is used to model the 3-D deformation and contact problem. As the firmness of the assembly on the needle depends on the contact force and friction, the contact and the slide between the needle and thread are taken into account in the simulation. The general surface-to-surface contact algorithm (STS) is used to simulate the contact. The paper provides an insight into the deformation of the micro products.