3 resultados para Final pressure

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contact conditions at the die radius are of primary importance to the wear response for many sheet metal forming processes. In particular, a detailed understanding of the contact pressure at the wearing interface is essential for the application of representative wear tests, the use of wear resistant materials and coatings, the development of suitable wear models, and for the ultimate goal of predicting tool life. However, there is a lack of information concerning the time-dependant nature of the contact pressure response in sheet metal stamping. This work provides a qualitative description of the evolution and distribution of contact pressure at the die radius for a typical channel forming process. Through an analysis of the deformation conditions, contact phenomena and underlying mechanics, it was identified that three distinct phases exist. Significantly, the initial and intermediate stages resulted in severe and localised contact conditions, with contact pressures significantly greater than the blank material yield strength. The final phase corresponds to a larger contact area, with steady and smaller contact pressures. The proposed contact pressure behaviour was compared to other results available in the literature and also discussed with respect to tool wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this task is to develop the high temperature part of a design code for fusion reactor components build from EUROFER. This development includes fracture mechanical rules for the assessment of detected defects under creep and creep–fatigue conditions. The assessment procedures R5, R6, JNC, A16, Partial Safety Factors were investigated and tested. As the most suitable procedure is chosen R5 and it is further verified by comparison with finite element simulations using the EUROFER material data. These simulations consist of evaluation of C(t) parameter for several geometries (CT specimen,cylinder with fully circumferential crack subjected to the internal pressure, cylinder with semi–elliptical circumferential crack subjected to the internal pressure and Mock-Up test blanket module (TBM) geometry). The R5 procedure provides very good accordance with FE simulations and it is suitable for lifetime assessment. Therefore the guide for R5 application is implemented in the report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the synthesis of hexagonal boron carbo-nitride (h-BCN) compounds via a two-step high-temperature and high-pressure (HTHP) technique using melamine (C 3N 6H 6) and boron oxide (B 2O 3) as raw materials is presented. An amorphous BCN precursor was prepared at 1000K under vacuum in a resistance furnace and then single-phase h-BCN nanocrystalline was synthesized at 1600K and 5.1GPa in a multi-anvil apparatus. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the final products were pure h-BCN crystals with the lattice constants a ≤ 0.2510nm and c ≤ 0.6690nm. The average grain size was about 150nm. X-ray photoelectron spectroscopy (XPS) results confirmed the occurrence of bonding between C-C, C-N, C-B and N-B atoms. Raman scattering analysis suggested that there were three strong Raman bands centered at 1359, 1596 and 1617cm -1, respectively. The band at 1617cm -1 was considered to be consistent with the characteristic Raman peak of h-BCN.