5 resultados para Filmes de Langmuir-Blodgett

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seven chemically designed monolayer compounds were synthesized and investigated with comparison to the properties and water evaporation suppression ability of 1-hexadecanol and 1-octadecanol. Increasing the molecular weight and polarity of the compound headgroup drastically altered the characteristics and performance of the monolayer at the air/water interface. Contrary to the common expectation the monolayer's lifetime on the water surface decreased with increasing number of ethylene oxy moieties, thus optimal performance for water evaporation suppression was achieved when only one ethylene oxy moiety was used. Replacing the hydroxyl headgroup with a methyl group and with multiple ethylene oxy moieties resulted in a loss of suppression capability, while an additional hydroxyl group provided a molecule with limited performance against water evaporation. Theoretical molecular simulation demonstrated that for exceptional performance, a candidate needs to possess a high equilibrium spreading pressure, the ability to sustain a highly ordered monolayer with a stable isotherm curve, and low tilt angle over the full studied range of surface pressures by simultaneously maintaining H-bonding to the water surface and between the monolayer chains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding, and improving, the behavior of thin surface films under exposure to externally applied forces is important for applications such as mimicking biological membranes, water evaporation mitigation, and recovery of oil spills. This paper demonstrates that the incorporation of a water-soluble polymer into the surface film composition, i.e., formation of a three-duolayer system, shows improved performance under an applied dynamic stress, with an evaporation saving of 84% observed after 16 h, compared to 74% for the insoluble three-monolayer alone. Canal viscometry and spreading rate experiments, performed using the same conditions, demonstrated an increased surface viscosity and faster spreading rate for the three-duolayer system, likely contributing to the observed improvement in dynamic performance. Brewster angle microscopy and dye-tagged polymers were used to visualize the system and demonstrated that the duolayer and monolayer system both form a homogeneous film of uniform, single-molecule thickness, with the excess material compacting into small floating reservoirs on the surface. It was also observed that both components have to be applied to the water surface together in order to achieve improved performance under dynamic conditions. These findings have important implications for the use of surface films in various applications where resistance to external disturbance is required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mixed monolayers of 1-octadecanol (C18OH) and ethylene glycol monooctadecyl ether (C18E1) were studied to assess their evaporation suppressing performance. An unexpected increase in performance and stability was found around the 0.5:0.5 bicomponent mixture and has been ascribed to a synergistic effect of the monolayers. Molecular dynamics simulations have attributed this to an additional hydrogen bonding interaction between the monolayer and water, due to the exposed ether oxygen of C18E1 in the mixed system compared to the same ether oxygen in the pure C18E1 system. This interaction is maximized around the 0.5:0.5 ratio due to the particular interfacial geometry associated with this mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA–didodecyldimethylammonium (DNA–DDDA) electrostatic complex was prepared and characterized through Fourier transformation infrared (FT-IR), 1H NMR and circular dichroism (CD) spectroscopy. When the dye molecule aqueous solutions were used as the subphase, the interaction between three dye molecules, acridine orange (AO), ethidium bromide (EB) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine tetra(p-toluenesulfonate) (TMPyP) and the complex at air/solution interface were investigated through the surface pressure–area (π–A) isotherms, Brewster angle microscopy and UV-Vis spectroscopy, respectively. Our investigation indicates that the interaction capabilities of the three dyes to DNA–DDDA complex are different and present an order of TMPyP>AO>EB. For the interaction forms, we believe that TMPyP intercalates into the double helix of DNA, and AO adsorbs onto the surface of the DNA. As for EB, the measured signal is too weak to give a definite interaction form in the present experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigated the Langmuir film and Langmuir–Blodgett (LB) monolayer film of a nonionic amphiphilic molecule, 4-(6-p-pyridyloxyl)hexyloxyl-4′-dodecyloxylazobenzene (C12AzoC6Py) and its mixture with poly(d,l-lactide-co-glycolide) (PLG) at different subphase pH values (2.0, 2.6, 3.3, 4.4, and 6.5, respectively) by surface pressure–area (π–A) isotherms, in situ interface Brewster angle microscopy (BAM), and ex situ atomic force microscopy (AFM). For pure C12AzoC6Py, its π–A isotherms display a plateau when the subphase pH value is lower than 3.0. The pressure of the plateau increases with the decrease of pH until 2.0. Over the plateau, the π–A isotherms become almost identical to the one under neutral conditions. The appearance of such a plateau can be explained as the coexistence of protonation and unprotonation of pyridyl head groups of the employed amphiphile. In contrast to the homogeneous surface morphology of pure C12AzoC6Py near the plateau by BAM observation, the surface in the case of its mixing with PLG exhibits a dendritic crystalline state under low surface pressure at subphase pH lower than 3.0. The crystalline state becomes soft and gradually melts into homogeneous aggregates with surface pressure increasing to a higher value than that of the plateau. Meanwhile, the hydrolysis of PLG in the mixture system at the interface has been affirmed to be restrained to a very large extent. And the PLG was believed to be compelled to the up layer of the LB film due to the phase separation, which is examined by AFM. Based on the experimental results, the corresponding discussion was also performed.