3 resultados para Film roughness

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel micro-spray-assembly process and an automatic device to fabricate multilayer ultra-thin film are introduced. Employing self-assembly monolayer (SAM) technique, ultra-thin film can be assembled by utilizing the micro-spray-assembly device. The thickness and roughness of each monolayer can be controlled by varying various materials attributes, i.e., deposition time, ionic strength, pH value, molecular concentration and by selecting different manufacturing parameters of the automatic device such as spraying rate, size of micro-drop, N2 flow rate, temperature of N2 flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improvement of the binding of polypyrrole with PVDF (polyvinylidene fluoride) thin film using low pressure plasma was studied. The effects of various plasma gases i.e., Ar, O2 and Ar + O2 gases on surface roughness, surface chemistry and hydrophilicity were noted. The topographical change of the PVDF film was observed by means of scanning electron microscopy and chemical changes by X-ray photoelectron spectroscopy, with adhesion of polypyrrole (PPy) by abrasion tests and sheet resistance measurements. Results showed that the increase in roughness and surface functionalization by oxygen functional groups contributed to improved adhesion and Ar + O2 plasma gave better adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.