68 resultados para Fiber reinforced materials

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compressive and flexural properties of hemp fiber reinforced concretes (FRC) were examined in this paper. Natural hemp fiber was mixed using dry and wet mixing methods to fabricate the FRC. Mechanical properties of the FRC were investigated. The main factors affecting compressive and flexural properties of the FRC materials were evaluated with an orthogonal test design. Fiber content by weight has the largest effect. The method for casting hemp FRC has been optimised. Under the optimum conditions, compressive strength increased by 4 %, flexural strength increased by 9 %, flexural toughness increased by 144 %, and flexural toughness index increased by 214 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites’ flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a theoretical approach to compare two types of fiber reinforced composite materials for femoral component of hip implants. The natural fiber reinforced composite implant is compared with carbon fiber reinforced composite and the results are evaluated against the control solution of a metallic implant made of titanium alloy. With identical geometry and loading condition, the composite implants assumed lower stresses, thus induced more loads to the bone and consequently reduced the risk of stress shielding, whilst the natural fiber reinforced composite showed promising result compared with carbon fibers. However, natural fibers, as well as carbon fibers, lack the power to improve interface debonding due to excessive loads in interface. Nevertheless, natural fiber reinforced composite could be an appropriate alternative given its capability of tailoring and achieving the optimal fiber orientation and robust design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerns about the environment and increasing awareness about sustainability issues are driving the push for developing new materials that incorporate renewable sustainable resources. Th is has resulted in the use of natural fi bers for developing natural fi ber-reinforced polymer composites (NFRPCs). A fundamental understanding of the fi ber-fi ber and fi ber-matrix interface is critical to the design and manufacture of polymer composite materials because stress transfer between load-bearing fi bers can occur at the both of these interfaces. Effi cient stress transfer from the matrix to the fi ber will result in polymer composites exhibiting suitable mechanical and thermal performance. Th e development of new techniques has facilitated a better understanding of the governing forces that occur at the interface between matrix and natural fi ber. Th e use of surfacemodification is seen as a critical processing parameter for developing new materials, and plasma-based modifi cation techniques are gaining more prominence from an environmental point of view, as well as a practical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an automated trimming system of large glass fiber reinforced plastic (GFRP) using an omni-directional wheeled mobile robot (WMR) and its path control method. In trimming GFRP parts, much glass fiber and plastic powder dust occur and it becomes bad visible in environment. It is necessary to correct dead-reckoning errors of the WMR in order to control its moving path. We have discussed an external correction method of the dead-reckoning errors for the WMR using ultrasonic sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

'Torayca' T800H/3900-2 is the first material qualified on Boeing Material Specification (BMS 8-276) which utilizes the thermoplastic-particulate interlayer toughening technology. Two manufacturing processes, the autoclave process and the fast heating rated Quickstep™ process, were employed to cure this material. The Quickstep process is a unique composite production technology which utilizes the fast heat transfer rate of fluid to heat and cure polymer composite components. The manufacturing influence on the mode I delamination fracture toughness of laminates was investigated by performing double cantilever beam tests. The composite specimens fabricated by two processes exhibited dissimilar delamination resistance curves (R-curves) under mode I loading. The initial value of fracture toughness GIC-INIT was 564 J/m2 for the autoclave specimens and 527 J/m2 for the Quickstep specimens. However, the average propagation fracture toughness GIC-PROP was 783 J/m2 for the Quickstep specimens, which was 2.6 times of that for the autoclave specimens. The mechanism of fracture occurred during delamination was studied under scanning electron microscope (SEM). Three types of fracture were observed: the interlayer fracture, the interface fracture, and the intralaminar fracture. These three types of fracture played different roles in affecting the delamination resistance curves during the crack growth. More fiber bridging was found in the process of delamination for the Quickstep specimens. Better fiber/matrix adhesion was found in the Quickstep specimens by conducting indentation-debond tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation is on the microstructure evolution and hardness of powder metallurgically processed Al- 0.5 wt.%Mg base 10 wt.% short steel fiber reinforced composites. The 0.38 wt.% C short steel fibers of average diameter 50µm and 500-800µm length were nitrided and chromized in a fluid bed furnace. Nitriding was carried out at 525°C for 90, 30 and 5 min durations. Chromizing was performed at 950°C for 53 and 7 min durations, using thermal reactive deposition (TRD) and diffusion technique. The treated fibers and resulting reaction interfaces were characterized using metallographic, microhardness and XRD techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examined the mechanical properties of natural fibre reinforced cementitious composite materials. The results have provided essential data for the design of these composite materials for different applications. The theoretical model developed also allows accurate prediction of composite behaviour under different loading conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular materials with three-dimensional fiber networks have applications in many fields. For these applications, a homogeneous fiber network is essential in order to get the desired performance of a material. However, such a fiber network is hard to obtain, particularly when the crystallization of fiber takes place nonisothermally. In this work, a copolymer is used to kinetically control the nucleation and fiber network formation of a small molecular gelling agent, N-lauroyl-L-glutamic acid di-nbutylamide (GP-1) in benzyl benzoate. The retarded nucleation and enhanced mismatch nucleation of the gelator by the additive leads to the conversion of a mixed fiber network into a homogeneous network consisting of spherulites only. The enhanced structural mismatch of the GP-1 during crystallization is quantitatively characterized using the rheological data. This effect also leads to the transformation of an interconnecting (single) fiber network of GP-1 into a multidomain fiber network in another solvent, isostearyl alcohol. The approach developed is significant to the production of supramolecular materials with homogeneous fiber networks and is convenient to switch a single fiber network to a multidomain network without adjusting the thermodynamic driving force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this article is to investigate the drilling of carbon fiber-reinforced plastic (CFRP) composite/metal stack-ups to have a details picture of the developments in this complex area. The forces and torque, chip shape, surface finish and geometry, and tool material and tool wear for drilling composite/metal stack-ups have been analyzed in details in addition to drilling mechanism of CFRP. The relation between input and output parameters was discussed and the trend of input parameters for damage free and tight tolerance holes has been investigated based on the literature. The main findings are (i) heat, built-up edge and chips generated from drilling of metallic layers damages CFRP surface, (ii) order of material layers affects the drilling outcomes significantly, (iii) coatings and step-shape on the cutting tool improves the tool performance, (iv) tool materials should be selected based on the material of metallic layer, (v) chipping, adhesion, abrasion and attrition are main tool wear mechanisms during machining of CFRP/metal stacks and (vi) application of coolant improves the machinability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a simple fiber/tape composite that is easy to prepare and structurally more uniform. This novel composite provides a good alternative standard composite sample for experimental study of various phenomena and issues in fiber reinforced composite behaviors. Experimental results in the present work demonstrate how the fiber fragmentation, fiber-reinforcing effect and the gauge length effect can be successfully evaluated by using this novel composite specimen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Strengthening and rehabilitation have been increasingly applied in many structures to improve their capacity and serviceability. Fiber Reinforced Polymer (FRP) materials are universally known for their ability to improve the load capacity of damaged structural elements because of their high linear-elastic behavior. However, enhancing the capacity of structural elements that are exposed to repeated load coupled with harsh environment is an area that requires further investigation. This research focused on experimental analysis of the behavior and response of confined and unconfined concrete compression members (300mm x 150mm) under repeated load while exposed to 1440 cycles of seawater splash zone in United Arab Emirates (UAE). Confining concrete compression members with Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) sheets have increased the load capacity compared to the control sample at room temperature by 110% and 84%, respectively. Results showed that the average value of compressive strength for the confined concrete exposed to sea water splash zone conditions for CFRP and GFRP specimens has decreased by 33% and 23%, respectively, compared to the confined concrete in the room temperature. However, GFRP specimens showed higher performance in compressive strength under sea water splash zone than those of the CFRP specimens. Different mode of failures such as delamination, de-bonding and combination of such modes were observed and related to various exposure factors and mechanical properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultra-high-molecular-weight polyethylene (UHMWPE) fibers have exceptionally higher specific strength and stiffness compared with other high-performance fibers. However, the interfacial adhesion and compressive performance of UHMWPE fiber-reinforced polymer composites (FPCs) are extremely low. The challenges are to achieve load transfer at the interface between the fiber and matrix at a molecular level. Here, we show that plasma pre-treatment of UHMWPE fibers followed by coating with polypyrrole (PPy) results in an 848% improvement in the interfacial adhesion and 54% enhancement in compressive performance. This method takes advantage of a toughening mechanism observed in spider silk and collagen, which the hydrogen bond power the load transfer. The results showed that these improvements of interfacial adhesion and compressive strength were attributed to hydrogen-bonding interactions between the plasma pre-treated UHMWPE and PPy, which improves the fiber-matrix-fiber load transfer process. In addition, the hydrogen-bonded PPy coatings also endowed durability electrical conductivity properties of the UHMWPE fiber.