4 resultados para FRACTAL STRUCTURE

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is described for making rapid in situ field measurements of riverbed topography over spatial scales of ≅1–10 m. This method uses rolling balls to make quick, accurate measurements of river-bed roughness at several spatial scales. Random sampling and replication generate multiple estimates of the fractal dimension (d) that can be used to test for significant differences in the complexity of riverbed architecture between habitat types and spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new kind of image retrieval system which obtains the feature vectors of images by estimating their fractal dimension; and at the same time establishes a tree-structure image database. After preprocessing and feature extracting, a given image is matched with the standard images in the image database using a hierarchical method of image indexing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The aim of this study was to identify specific bone characteristics of stress fracture (SF) cases in sportswomen. To date, no tool is able to distinguish individuals who are at risk, limiting preventive measures.

Material and methods We investigated the skeletal system of sportswomen who did sustain SF in the past (n = 19) and compared it with that of female controls (C) with a similar sporting history but without any fracture history (n = 20).

Bone mass and body composition were measured using dual-energy X-ray absorptiometry. Bone micro-architecture was investigated by calcaneal ultrasound and fractal analysis of calcaneus radiographic images. Oestradiol levels were measured by E.I.A, and IGF-1 by R.I.A. Menstrual characteristics, nutrient intake, and training were assessed using questionnaires.

Results The result of the fractal analysis, expressed by the Hmean parameter, was significantly lower in the SF group, reflecting a more complex structure of the trabecular micro-architectural organization (P < 0·005). Body mass index (BMI) at birth was also found to be lower in the SF cases as compared with their C (P < 0·03).

Multivariate analysis revealed that the fractal parameter Hmean, bone mineral content (BMC) at Ward's triangle and the BMI at birth correctly assigned 84·85% of the female athletes into their respective SF or C groups (P = 0·001).

Conclusion These results suggest that the fractal parameter and the BMI at birth may be able to identify female athletes most at risk for this overuse bone injury, as their low indexes might reflect a greater skeletal sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of molecular gels formed in a confined space have potential applications in transdermal delivery, artificial skin, molecular electronics, etc. The microstructures and properties of thin gel films can be significantly different from those of their bulk counterparts. However, so far a comprehensive understanding of the effects of spatial confinement on the molecular gelation kinetics, fiber network structure and related mechanical properties is still lacking. In this work, using rheological techniques, we investigated the effect of one-dimensional confinement on the formation kinetics of fiber networks in the molecular gelation process. Fractal analyses of the kinetic information in terms of an extended Dickinson model enabled us to describe quantitatively the distinct kinetic signature of molecular gelation. The structural features derived from gelation kinetics support well the fractal patterns of the fiber networks acquired by optical and electron microscopy. With the kinetics-structure correlation, we can gain an in-depth understanding of the confinement-induced differences in the structure and consequently the mechanical properties of a model molecular gelling system. Particularly, the confinement induced structural transition, from a three-dimensional, dense and compact spherulitic network composed of highly branched fibers to a quasi-two-dimensional sparse spherulitic network composed of less branched fibers and entangled fibrils at the boundary areas, renders a gel film to become less stiff but more ductile. Our study suggests here a new strategy of engineering the fiber network microstructure to achieve functional gel films with unusual but useful properties.