4 resultados para FOXP3

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor Foxp3 represents the most specific functional marker of CD4+ regulatory T cells (TRegs). However, previous reports have described Foxp3 expression in other cell types including some subsets of macrophages, although there are conflicting reports and Foxp3 expression in cells other than Treg is not well characterized. We performed detailed investigations into Foxp3 expression in macrophages in the normal tissue and tumor settings. We detected Foxp3 protein in macrophages infiltrating mouse renal cancer tumors injected subcutaneously or in the kidney. Expression was demonstrated using flow cytometry and Western blot with two individual monoclonal antibodies. Further analyses confirmed Foxp3 expression in macrophages by RT PCR, and studies using ribonucleic acid-sequencing (RNAseq) demonstrated a previously unknown Foxp3 messenger (m)RNA transcript in tumor-associated macrophages. In addition, depletion of Foxp3+ cells using diphtheria toxin in Foxp3DTR mice reduced the frequency of type-2 macrophages (M2) in kidney tumors. Collectively, these results indicate that tumor-associated macrophages could express Foxp3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin, an autoantigen in type 1 diabetes, when administered mucosally to diabetes-prone NOD mice induces regulatory T cells (Treg) that protect against diabetes. Compared with protein, Ag encoded as DNA has potential advantages as a therapeutic agent. We found that intranasal vaccination of NOD mice with plasmid DNA encoding mouse proinsulin II-induced CD4+ Treg that suppressed diabetes development, both after adoptive cotransfer with "diabetogenic" spleen cells and after transfer into NOD mice given cyclophosphamide to accelerate diabetes onset. In contrast to prototypic CD4+CD25+ Treg, CD4+ Treg induced by proinsulin DNA were both CD25+ and CD25 and not defined by markers such as glucocorticoid-induced TNFR-related protein (GITR), CD103, or Foxp3. Intriguingly, despite induction of Treg and reduced islet inflammation, diabetes incidence in proinsulin DNA-treated mice was unchanged. However, diabetes was prevented when DNA vaccination was performed under the cover of CD40 ligand blockade, known to prevent priming of CTL by mucosal Ag. Thus, intranasal vaccination with proinsulin DNA has therapeutic potential to prevent diabetes, as demonstrated by induction of protective Treg, but further modifications are required to improve its efficacy, which could be compromised by concomitant induction of pathogenic immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As there is limited knowledge regarding the longitudinal development and early ontogeny of naïve and regulatory CD4(+) T-cell subsets during the first postnatal year, we sought to evaluate the changes in proportion of naïve (thymic and central) and regulatory (resting and activated) CD4(+) T-cell populations during the first postnatal year. Blood samples were collected and analyzed at birth, 6 and 12 months of age from a population-derived sample of 130 infants. The proportion of naïve and regulatory CD4(+) T-cell populations was determined by flow cytometry, and the thymic and central naïve populations were sorted and their phenotype confirmed by relative expression of T cell-receptor excision circle DNA (TREC). At birth, the majority (94%) of CD4(+) T cells were naïve (CD45RA(+)), and of these, ~80% had a thymic naïve phenotype (CD31(+) and high TREC), with the remainder already central naïve cells (CD31(-) and low TREC). During the first year of life, the naïve CD4(+) T cells retained an overall thymic phenotype but decreased steadily. From birth to 6 months of age, the proportion of both resting naïve T regulatory cells (rTreg; CD4(+)CD45RA(+)FoxP3(+)) and activated Treg (aTreg, CD4(+)CD45RA(-)FoxP3(high)) increased markedly. The ratio of thymic to central naïve CD4(+) T cells was lower in males throughout the first postnatal year indicating early sexual dimorphism in immune development. This longitudinal study defines proportions of CD4(+) T-cell populations during the first year of postnatal life that provide a better understanding of normal immune development.