10 resultados para FLUORENE-BASED COPOLYMERS

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA), 3-(diallyl-amino)-2-hydroxypropyl sulfonate (NDS), acrylamide (AM) and acrylic acid (AA) were successfully utilized to prepare novel acrylamide-based copolymers (named AM/AA/NIMA and AM/AA/NDS/NIMA) which were functionalized by a combination of imidazoline derivative and/or sulfonate via redox free-radical polymerization. The two copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), viscosimetry, pyrene fluorescence probe, thermogravimetry (TG) and differential thermogravimetry (DTG). As expected, the polymers exhibited excellent thickening property, shear stability (viscosity retention rate 5.02% and 7.65% at 1000 s-1) and salt-tolerance (10:000 mg L-1 NaCl: viscosity retention rate up to 17.1% and 10.2%) in comparison with similar concentration partially hydrolyzed polyacrylamide (HPAM). The temperature resistance of the AM/AA/NDS/NIMA solution was also remarkably improved and the viscosity retention rate reached 54.8% under 110 °C. According to the core flooding tests, oil recovery could be enhanced by up to 15.46% by 2000 mg L-1 of the AM/AA/NDS/NIMA brine solution at 80 °C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a non-renewable resource, the rational exploitation of oil has attracted a large amount of attention. Among many methods for enhanced oil recovery, polymer flooding is the most suitable method of chemical flooding for non-marine reservoirs and therefore various modified acrylamide-based copolymers have been studied. In this study, a novel α-aminophosphonic acid-modified hydrophobic associating copolymer was successfully synthesized by copolymerization of acrylamide, acrylic acid, N-allyldodecanamide and 1-(dimethylamino)allylphosphonic acid. The copolymer was characterized by FT-IR, 1H NMR and thermogravimetry and exhibited superior water solubility and thickening capability. Subsequently, the shear resistance, temperature resistance and salt tolerance of the copolymer solution were investigated. The value of apparent viscosity retention of a 2000 mg L-1 copolymer solution was as high as 58.55 mPa s at a shear rate of 170 s-1 and remained at 40.20 mPa s at 120 °C. The values of apparent viscosity retention of 55.41 mPa s, 59.95 mPa s and 52.97 mPa s were observed in solutions of 10000 mg L-1 NaCl, 1200 mg L-1 MgCl2, and 1200 mg L-1 CaCl2, respectively. These were better than those of partially hydrolyzed polyacrylamide under the same conditions. In addition, an increase of up to 14.52% in the oil recovery rate compared with that for water flooding could be achieved in a core flooding test using a 2000 mg L-1 copolymer solution at 65 °C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel imidazoline-based sulfonate copolymers (noted PAMDSCM and PAMPSCM) were successfully prepared by copolymerization of acrylamide (AM), acrylic acid (AA), 1-acrylamido ethyl-2-oleic imidazoline (ACEIM) with the sodium salts of 3-(diallyl-amino)-2-hydroxypropyl (NDS) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS), respectively. The copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR) spectroscopy, pyrene fluorescence probe spectroscopy, viscosimetry and thermogravimetry (TG). Both PAMDSCM and PAMPSCM copolymers had excellent high-temperature tolerance in comparison with the same concentration of HPAM, and the residual viscosities were 32.0 mPa s and 31.3 mPa s (viscosity retention rates were 38.8% and 37.1%) at 140 °C, respectively. The copolymers possessed superior long-term thermal stability and their residual viscosity rates were up to 81.8% and 63.8% (52.9 mPa s and 47.1 mPa s) lasting 1.5 hours at 100 °C and 170 s-1, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A class of new conjugated copolymers containing a donor (thiophene)−acceptor (2-pyran-4-ylidene-malononitrile) was synthesized via Stille coupling polymerization. The resulting copolymers were characterized by 1H NMR, elemental analysis, GPC, TGA, and DSC. UV−vis spectra indicated that the increase in the content of the thiophene units increased the interaction between the polymer main chains to cause a red-shift in the optical absorbance. Cyclic voltammetry was used to estimate the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) and the band gap (Eg) of the copolymers. The basic electronic structures of the copolymers were also studied by DFT calculations with the GGA/B3LYP function. Both the experimental and the calculated results indicated an increase in the HOMO energy level with increasing the content of thiophene units, whereas the corresponding change in the LUMO energy level was much smaller. Polymer photovoltaic cells of a bulk heterojunction were fabricated with the structure of ITO/PEDOT/PSS (30 nm)/copolymer−PCBM blend (70 nm)/Ca (8 nm)/Al (140 nm). It was found that the open-circuit voltage (Voc) increased (up to 0.93 V) with a decrease in the content of thiophene units. Although the observed power convention efficiency is still relatively low (up to 0.9%), the corresponding low fill factor (0.29) indicates considerable room for further improvement in the device performance. These results provided a novel concept for developing high Voc photovoltaic cells based on donor-π-acceptor conjugated copolymers by adjusting the donor/acceptor ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to overcome interfacial incompatibility issues in natural fibre reinforced polymer bio-composites, surface modifications of the natural fibres using complex and environmentally unfriendly chemical methods is necessary. In this paper, we demonstrate that the interfacial properties of cellulose-based bio-composites can be tailored through surface adsorption of polyethylene glycol (PEG) based amphiphilic block copolymers using a greener alternative methodology. Mixtures of water or water/acetone were used to form amphiphilic emulsions or micro-crystal suspensions of PEG based amphiphilic block copolymers, and their deposition from solution onto the cellulosic substrate was carried out by simple dip-coating. The findings of this study evidence that, by tuning the amphiphilicity and the type of building blocks attached to the PEG unit, the flexural and dynamic thermo-mechanical properties of cellulose-based bio-composites comprised of either polylactide (PLA) or high density polyethylene (HDPE) as a matrix, can be remarkably enhanced. The trends, largely driven by interfacial effects, can be ascribed to the combined action of the hydrophilic and hydrophobic components of these amphiphiles. The nature of the interactions formed across the fibre-matrix interface is discussed. The collective outcome from this study provides a technological template to significantly improve the performance of cellulose-based bio-composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the rigid norbornane scaffold, a series of low-molecular-weight organogelators has been synthesised and evaluated. Three separate compounds (16, 19 and 20) were identified as organogelators in three aromatic organic solvents (PhMe, anisole and o-xylene). The formation of fibrillar assemblies at nanometre level was confirmed using atomic force microscopy and transmission electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binary and ternary nanocomposites were produced by incorporating, via melt compounding, two types of octa-and dodecaphenyl substituted polyhedral oligomeric silsesquioxanes (POSS), montmorillonite (MMT), and combinations of POSS with MMT into nylon 6. The tensile, flexural, and dynamic thermo-mechanical properties of these materials were characterized and their structure-property relationships discussed. The results show that the losses in ductility and toughness experienced after inclusion of MMT into nylon 6 can be balanced out by co-mixing MMT with the dodecaphenyl- POSS to produce a ternary nanocomposite. This trend however was less pronounced in the ternary MMT/octaphenyl-POSS system. Analysis of the microstructure organization in these materials using XRD and SEM sheds some light on understanding the differences in behavior. Both types of POSS particles mixed alone in nylon 6 were found to be polydisperse (500 nm to a few microns in size) and locally aggregated, yielding materials with similar mechanical performance. The co-mixing of MMT with the octaphenyl- POSS served to break down the POSS crystal aggregates, enhancing their micro-mechanical reinforcing action. On the other hand, the POSS crystals were not affected in the MMT/dodecaphenyl-POSS system, which led to improving their toughening ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigated the effect of polymer architecture on the ion dynamics and local structure to understand the factors that might lead to the design of highly conductive and mechanically robust polyelectrolytes. Molecular dynamic simulations were undertaken on the sodium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl) imide] P(STFSINa) homopolymer and its copolymers with either ether or styrene spacer groups to investigate the spacer length and polarity dependence of Na-ion transport. Using a scaled charge model, we observed a continuous ion aggregate network in the homopolymer, which facilitates the fast ion dynamics despite the rigid polymer matrix. The longest spacer groups disrupt this percolating ionic network differently, with the ether group being more disruptive than the styrene group, and leading to more discrete ionic aggregates. The copolymer with the ether spacer was also found to result in an alternative Na-ion diffusion mechanism.