35 resultados para FIBRILACION ATRIAL

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the mRNA expression of the atrial natriuretic peptide (ANP) system (peptide and receptors) during water deprivation in the spinifex hopping mouse, Notomys alexis, a native of central and western Australia that is well adapted to survive in arid environments. Initially, ANP, NPR-A and NPR-C cDNAs (partial for receptors) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. Using a semi-quantitative multiplex PCR technique, the expression of cardiac ANP mRNA and renal ANP, NPR-A, and NPR-C mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control mice (access to water). The levels of ANP mRNA expression in the heart remained unchanged, but in the kidney ANP mRNA levels were increased in the 7-day water-deprived mice, and were significantly decreased in the 14-day water-deprived mice. NPR-A mRNA levels were significantly higher in 7-day water-deprived mice while no change for NPR-A mRNA expression was observed in 14-day water-deprived mice. No variation in NPR-C mRNA levels was observed. This study shows that water deprivation differentially affects the expression of the ANP system, and that renal ANP expression is more important than cardiac ANP in the physiological adjustment to water deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complementary DNA (cDNA) encoding Bufo marinus (toad) preproatrial natriuretic peptide (preproANP) was isolated by reverse-transcription polymerase chain reaction. Sequence analysis of toad preproANP cDNA revealed an open reading frame of 150 amino acid residues, which shared 72% and 66% identity with Rana catesbeiana and Xenopus laevis preproANP, respectively. The deduced amino acid sequence of toad ANP that corresponded to ANP 1–24 of R. catesbeiana and Rana ridibunda was identical, but it differed by four residues from that of X. laevis. ANP mRNA transcripts were also shown to be expressed in the toad kidney. Subsequently, the effect of frog ANP (1–24) on renal function in toad was examined using a perfused kidney preparation. The arterial infusion of frog ANP caused a dose-dependent decrease in the arterial perfusion pressure that was associated with an increase in the glomerular filtration rate (GFR) and a renal natriuresis and diuresis. The renal natriuresis and diuresis resulted predominantly from an increased GFR rather than from direct tubular effects. This study demonstrates that ANP can regulate renal function, which suggests it may be involved in overall fluid volume regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stimulatory effect of vasomodulatory natriuretic peptide hormones on macrophages and peripheral blood leucocytes in mammals is well-established. However, the relationship in lower vertebrates has not been characterised. Expression of atrial natriuretic peptide, ventricular natriuretic peptide and C-type natriuretic peptide-1, and the guanylyl cyclase-linked (GC) natriuretic peptide receptor-A and -B-type receptors (NPR-A and NPR-B, respectively) was determined by PCR from the mRNA of rainbow trout head kidney leucocytes yielding gene fragments with 100% homology to the same respective natriuretic peptide and NPR-A and -B sequences obtained from other rainbow trout tissues. A mixed population of isolated rainbow trout head kidney leucocytes was stimulated in vitro with trout atrial natriuretic peptide (specific NPR-A agonist) and trout C-type natriuretic peptide (NPR-A and -B agonist) as well as the cGMP agonist 8-bromo-cGMP or the GC inhibitor 8-bromo-phenyl-eutheno-cGMP. Respiratory burst was stimulated by trout atrial natriuretic peptide, trout C-type natriuretic peptide-1 and 8-bromo-cGMP in a dose dependant manner with the highest activity as a result of stimulation with trout C-type natriuretic peptide-1 in excess of that achieved by phorbol myristate acetate (PMA). Equimolar concentrations of the inhibitor, inhibited the respiratory burst caused by the natriuretic peptides and 8-bromo-cGMP. The natriuretic peptide receptors on rainbow trout head kidney leucocytes appear to have a stimulatory function with regard to respiratory burst that is activated through a cGMP second messenger pathway and the natriuretic peptides expressed in the head kidney leucocytes may well act in a paracrine/autocrine manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amiodarone is an effective medication in preventing atrial fibrillation (AF), but it interferes with the metabolism of warfarin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prospective 1-year observational survey was designed to assess the management and control of atrial fibrillation (AF) in eight countries within the Asia-Pacific region. Patients (N = 2,604) with recently diagnosed AF or a history of AF ≤1 year were included. Clinicians chose the treatment strategy (rhythm or rate control) according to their standard practice and medical discretion. The primary endpoint was therapeutic success. At baseline, rhythm- and rate-control strategies were applied to 35.7% and 64.3% of patients, respectively. At 12 months, therapeutic success was 43.2% overall. Being assigned to rhythm-control strategy at baseline was associated with a higher therapeutic success (46.5% vs 41.4%; P = 0.0214) and a lower incidence of clinical outcomes (10.4% vs 17.1% P < 0.0001). Patients assigned to rate-control strategies at baseline had higher cardiovascular morbidities (history of heart failure or valvular heart disease). Cardiovascular outcomes may be less dependent on the choice of treatment strategy than cardiovascular comorbidities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is the most prevalent sustained arrhythmia in Australia and globally. It is perhaps the strongest independent clinical predictor of stroke, multiplying the risk almost five-fold and accounting for about a fifth of total strokes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plants, as in vertebrates, natriuretic peptide (NP) hormones can influence water and solute homeostasis. Here we demonstrate that a synthetic peptide identical to the C-terminus (amino acids 99–126) of the rat atrial natriuretic peptide (rANP) modulates osmotically induced swelling of mesophyll cell protoplasts (MCPs) in a concentration and time-dependent manner. Osmotically-induced volume changes in MCPs are enhanced by plant extracts with NP immunoreactivity and this effect is concentration-dependent. In contrast, pre-treatment of the plant extracts with rabbit anti-human ANP (99–126) antiserum suppresses enhanced osmoticum-induced swelling. Isolated plant peptides (irPNP) that have been immunoaffinity purified with rabbit anti-human ANP (99–126) antiserum also enhance osmotically-induced swelling. While rANP and irPNP cause increases in cGMP levels in MCPs, elevated cGMP levels do not cause increases in osmoticum-dependent swelling but exert an inhibitory effect. These findings are consistent with a NP-dependent, cGMP-independent effect on plant cell volume regulation and a role in homeostasis for peptides that are recognized by antibodies directed against the C-terminus of vertebrate ANPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natriuretic peptide receptors in the central vasculature of the toad, Bufo marinus, were characterized using autoradiographical, molecular, and physiological techniques. Specific 125I-rat ANP binding sites were present in the carotid and pulmonary arteries, the lateral aorta, the pre- and post-cava, and the jugular vein, and generally occurred in each layer of the blood vessel. The 125I-rat ANP binding was partially displaced by the specific natriuretic peptide receptor C ligand, C-ANF, which indicates the presence of two types of natriuretic peptide receptors in the blood vessels. This was confirmed by a RT-PCR study, which demonstrated that guanylyl cyclase receptor (NPR-GC) and NPR-C mRNAs are expressed in arteries and veins. An in vitro guanylyl cyclase assay showed that frog ANP stimulated the production of cGMP in arterial membrane fractions. Physiological recordings from isolated segments of the carotid and pulmonary arteries and the lateral aorta, which had been pre-constricted with arginine vasotocin, showed that rat ANP, frog ANP and porcine CNP relaxed the vascular smooth muscle with relatively similar potency. Together, the data show that the central vasculature contains two types of natriuretic peptide receptors (NPR-C and NPR-GC) and that the vasculature is a target for ANP and CNP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to localize and characterize natriuretic peptide binding sites in the urinary bladder of Bufo marinus and to then examine the effect of natriuretic peptides on the bladder vascular tone and water reabsorption in isolated perfused bladder preparations. Specific 125I-rat atrial natriuretic peptide (125I-rANP) binding sites were present on blood vessels, muscle, and epithelium. In tissue sections and/or isolated membranes, the binding was completely displaced by frog ANP, rat ANP, and porcine C-type natriuretic peptide (CNP; membranes only). However, a reduction in binding was observed after incubation with 125I-rANP and 1 μM of the natriuretic peptide receptor-C (NPR-C) ligand C-ANF, but residual binding remained suggesting the presence of two distinct binding sites. Electrophoresis of bladder membranes cross-linked to 125I-rANP identified two bands at approximately 70 and 140 kDa that correspond to the monomeric mass of NPR-C and the guanylate cyclase receptors, respectively. Furthermore, the presence of natriuretic peptide receptor-A and NPR-C mRNA in the bladder was demonstrated with reverse transcription–polymerase chain reaction. In addition, rat ANP, frog ANP, and porcine CNP stimulated a significant increase in cGMP generation in bladder membrane preparations, which indicated the presence of guanylate cyclase-linked receptors. In perfused bladder preparations, arginine vasotocin increased perfusion pressure and water permeability. The infusion of frog ANP or porcine CNP failed to alter perfusion pressure or water reabsorption in the presence or absence of arginine vasotocin. This study identified a well-developed natriuretic peptide receptor system in the urinary bladder of B. marinus but the function of the receptors remains unclear.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant natriuretic peptide immuno-analogues (irPNP) have previously been shown to affect a number of biological processes including stomatal guard cell movements, ion fluxes and osmoticum-dependent water transport. Tissue printing and immunofluorescent labelling techniques have been used here to study the tissue and cellular localization of irPNP in ivy (Hedera helix L.) and potato (Solanum tuberosum L.). Polyclonal antibodies active against human atrial natriuretic peptide (anti-hANP) and antibodies against irPNP from potato (anti-StPNP) were used for immunolabelling. Tissue prints revealed that immunoreactants are concentrated in vascular tissues of leaves, petioles and stems. Phloem-associated cells, xylem cells and parenchymatic xylem cells showed the strongest immunoreaction. Immunofluorescent microscopy with fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG supported this finding and, furthermore, revealed strong labelling to stomatal guard cells and the adjacent apoplastic space as well. Biologically active immunoreactants were also detected in xylem exudates of a soft South African perennial forest sage (Plectranthus ciliatus E. Mey ex Benth.) thus strengthening the evidence for a systemic role of the protein. In summary, in situ cellular localization is consistent with physiological responses elicited by irPNPs reported previously and is indicative of a systemic role in plant homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natriuretic peptides are linked to osmoregulation, cardiovascular and volume regulation in fishes. The peptides bind to two guanylyl-cyclase-linked receptors, natriuretic peptide receptor-A (NPR-A) and NPR-B, to elicit their effects. Atrial natriuretic peptide (ANP) binds principally to NPR-A, whereas C-type natriuretic peptide (CNP) binds to NPR-B. The teleost kidney has an important role in the maintenance of fluid and electrolyte balance; therefore, the location of NPR-A and NPR-B in the kidney could provide insights into the functions of natriuretic peptides. This study used homologous, affinity purified, polyclonal antibodies to NPR-A and NPR-B to determine their location in the kidney of the Japanese eel, Anguilla japonica. Kidneys from freshwater and seawater acclimated animals were fixed overnight in 4% paraformaldehyde before being paraffin-embedded and immunostained. NPR-A immunoreactivity was found on the apical membrane of proximal tubule 1 and the vascular endothelium including the glomerular capillaries. In contrast, NPR-B immunoreactivity was located on the smooth muscle of blood vessels including the glomerular afferent and efferent arterioles, and on smooth muscle tissue surrounding the collecting ducts. No difference in the distribution of NPR-A and NPR-B was observed between freshwater and seawater kidneys. Immunoreactivity was not observed in any tissue in which the antibodies had been preabsorbed. In addition, there was no difference in NPR-A and NPR-B mRNA expression between freshwater-acclimated and seawater-acclimated eels. These results suggest that, although utilizing the same second messenger system, ANP and CNP act on different targets within the kidney and presumably elicit different effects.