22 resultados para FEM, wind turbine blade, Ansys, static and modal analysis, experimental test

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents potential barriers to integrate the squirrel cage induction generator (SCIG) and doubly fed induction generator (DFIG) type wind turbine in distribution networks. The analysis is carried out over a 16 bus distribution test system. Both static and dynamic analyses are performed to see the impact of two different generators on the distribution system. The simulation results show that both SCIG and DFIG type wind turbines have significant impact on the static voltage stability, power loss, and dynamic behavior of the system, which should be taken into account to improve systems performance before integrating wind generation in existing distribution networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore wind turbine requires more systematized operation and maintenance strategies to ensure systems are harmless, profitable and cost-effective. Condition monitoring and fault diagnostic systems ominously plays an important role in offshore wind turbine in order to cut down maintenance and operational costs. Condition monitoring techniques which describing complex faults and failure mode types and their generated traceable signs to provide cost-effective condition monitoring and predictive maintenance and their diagnostic schemes. Continuously monitor the condition of critical parts are the most efficient way to improve reliability of wind turbine. Implementation of Condition Based Maintenance (CBM) strategy provides right time maintenance decisions and Predictive Health Monitoring (PHM) data to overcome breakdown and machine downtime. Fault detection and CBM implementation is challenging for off shore wind farm due to the complexity of remote sensing, components health and predictive assessment, data collection, data analysis, data handling, state recognition, and advisory decision. The rapid expansion of wind farms, advanced technological development and harsh installation sites needs a successful CM approach. This paper aims to review brief status of recent development of CM techniques and focusing with major faults takes place in gear box and bearing, rotor and blade, pitch, yaw and tower system and generator and control system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green energy targets for coming decades advocates high penetration of wind energy in main energy matrix which also pose incendiary threat to stability and reliability of modern electric grid if their dynamic performance aspects are not assessed beforehand. Considering increasing interest in dynamic performance along with ancillary service assessment related to frequency regulation, development of suitable generic modeling has gained high priority. This paper presents modeling of type 4 full converter wind turbine generator system suitable for frequency regulation focusing on active power control. Complete model is a modification of WECC generic model with additional aerodynamic and pitch control model. Descriptions of individual sub models are presented and performance results are compared manufacturer specific GE type 4 WTG generic model by means of simulations in the MATLAB ® Power System Block set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents simple methods of determining parameters of interior permanent magnet (IPM) synchronous generator such as magnet flux (λM), d-axis inductance (Ld) and q-axis inductance (Lq) of IPM synchronous generator, which are used to control the wind turbine generator. These methods are simple and do not require any complex theory, signal injection or special equipment. Moreover, a sensorless speed estimator is proposed to estimate the speed of the generator without using speed sensor. The measured parameters are used in this speed estimator. The elimination of speed sensor will enhance the system robustness and reduce the design complexity and system cost for a small-scale wind turbine considered in this paper. The effectiveness of parameter measurement methods and sensorless speed estimator is demonstrated by experimental results. Experimental results show that the proposed speed estimator that uses the measured parameters can estimate the generator speed with a small error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind energy system integration can lead to adverse effects on modern electric grid so it is imperative toassess their dynamic performance before actual plant startup. Transmission system operators all over theworld stress the need for a proper wind turbine generator model for dynamic performance as well asancillary service assessments. Due to the bulk power system assessment requirements, developmentof suitable generic modeling has gained high priority. Generic modeling of type 4 full converter wind turbinegenerator system for application in frequency ancillary service investigations under varying windspeed and varying reference power has been presented in this study. Prevalent generic model, manufacturerspecific proprietary generic model along with detailed wind turbine model with synchronous generatoris also provided to highlight various modelling framework difference. Descriptions of individualsub models of proposed generic model are presented in detail and performance results are comparedand validated with GE’s proprietary generic model and detailed WTG model by means of simulationsin the MATLAB Power System Block set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple way to improve its power coefficient (cp) of a Savonius turbine is by its installation above a cuboidal building as the building will redirect the wind and increase its speed significantly. To determinethe gain, a turbine was constructed and installed above a bluff body and tow tested. Detailed measurements of vehicle speed and turbine power were made. Tow test speeds were 8, 10 and 12 m/s, while TSR range was 0.6-1.1. Most importantly, wind speed at the position beside and slightly above the turbine was measured during test runs. The cp calculated using this measured wind speed was used to validate CFD simulation results. Simulation results were also used to obtain the relationships between the wind speed of the free stream and at the anemometer position. Typically, wind speed at the anemometer position is about 9% higher than those of the free stream. These relationships were used to derive the free stream wind speed of each experimental run. The cp calculated using these derived free stream wind speeds showed an increase of 25% at 12 m/s wind speed, compared to the cp reported by previous researchers for a similar turbine operating in unmodified air flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel pitch control design method is proposed for the doubly fed induction generator (DFIG) wind turbine (WT) using linear quadratic regulator (LQR). A seven-order model represents the DFIG WT which is linearized by truncated Taylor series expansion. A systematic approach is adopted to determine the weighting matrices in LQR design for the optimal solution. Simulations have been carried out to compare the performance of the proposed LQR pitch control method against a PI pitch control for small and large disturbances. It is shown that the proposed control method enhances low-voltage ride-through capability and improves system damping under large disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid method has been developed to determine recrystallization kinetics of Nb microalloyed steels by interrupted hot torsion test. The softening behaviour was achieved as a function of different processing parameters. The method clearly identified three regions, where the strain dependency of the recrystallization rate varied. Firstly, at large strains the rate of recrystallization was not a function of strain; this is generally ascribed to metadynamic recrystallization. At lower strains the time to 50% recrystallization showed a power low relationship with strain, characteristic of static recrystallization. A further break point exists on the time for 50% softening curve when strain induced precipitation occurs in the material. The onset of strain induced precipitation was at strains below the strain to the peak stress at temperatures below 900°C. The experimental results were used to estimate the time for 50% softening and to anticipate the onset of the strain induced precipitation for the alloy of this study. Grain refinement of the recrystallized austenite continued to strains significantly beyond the peak stress and beyond the static to metadynamic recrystallization rate transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid method was used to identify kinetics of the recrystallization for two IF (Interstitial Free) steels which have different phosphorous and boron contents. The static and metadynamic softening behaviour of the materials for a range of strain rates and temperatures were quantified. The critical strain for initiation of strain independent softening was estimated for the IF steels in respect to the time for 50 percent softening after deformation. The results showed that the strain for the initiation of strain independent softening (often referred to as metadynamic recrystallization) varies with the Zener Hollomon parameter. Classic static recrystallization was observed at strains below the strain independent softening for all processing conditions and the strain rate had a strong effect on the time for strain independent softening. Results also revealed that static and metadynamic recrystallization was delayed owing to the phosphorous and boron alloying elements. Hence, the large strain at above no-recrystallization temperature may be required for the early stage of Finishing Stands Unit (FSU) in hot strip rolling mills to initiate austenite grain refinement of phosphorous and boron added IF steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents experimental and computational results obtained on the Ford Barra 190 4.0 litres I6 gasoline engine and on the Ford Falcon car equipped with this engine. Measurements of steady engine performance, fuel consumption and exhaust emissions were first collected using an automated test facility for a wide range of cam and spark timings vs. throttle position and engine speed. Simulations were performed for a significant number of measured operating points at full and part load by using a coupled Gamma Technologies GT-POWER/GT-COOL engine model for gas exchange, combustion and heat transfer. The fluid model was made up of intake and exhaust systems, oil circuit, coolant circuit and radiator cooling air circuit. The thermal model was made up of finite element components for cylinder head, cylinder, piston, valves and ports and wall thermal masses for pipes. The model was validated versus measured steady state air and fuel flow rates, cylinder pressure parameters, indicated and brake mean effective pressures, and temperature of metal, oil and coolant in selected locations. Computational results agree well with experiments, demonstrating the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC, as well as to optimize engine operation changing geometry, throttle position, cam and spark timing. Measurements of the transient performance and fuel consumption of the full vehicle were then collected over the NEDC cycle. Simulations were performed by using a coupled Gamma Technologies GT-POWER/GT-COOL/GT-DRIVE model for instantaneous engine gas exchange, combustion and heat transfer and vehicle motion. The full vehicle model is made up of transmission, driveshaft, axles, and car components and the previous engine model. The model was validated with measured fuel flow rates through the engine, engine throttle position, and engine speed and oil and coolant temperatures in selected locations. Instantaneous engine states following a time dependent demand for torque and speed differ from those obtained by interpolating steady state maps of BSFC vs. BMEP and speed. Computational results agree well with experiments, demonstrating the utility of the approach in providing a more accurate prediction of the fuel consumption over test cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slab-girder bridges are widely used in Australia. The shear connection between reinforced concrete slab and steel girder plays an important role in composite action. In order to test the suitability and efficiency of various vibration-based damage identification methods to assess the integrity of the structure, a scaled composite bridge model was constructed in the laboratory. Some removable shear connectors were specially designed and fabricated to link the beam and slab that were cast separately. In this test, two static loads were acted in the 1/3 points of the structure. In the first stage, dynamic test was conducted under different damage scenarios, where a number of shear connectors were removed step by step. In the second stage, the static load is increased gradually until concrete slab cracked. Static tests were conducted continuously to monitor the deflection and loading on the beam. Dynamic test was carried out before and after concrete cracking. Both static and dynamic results can be used to identify damage in the structure.