6 resultados para FAR-INFRARED ABSORPTION

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple, yet very powerful technique for the spectral acquisition of an extremely thin film with enhanced absorption was explored. An infrared absorption of an extremely thin film confined between media of high refractive indices was greater than that of its bulk when the spectrum was acquired under the attenuated total reflection (ATR) condition with parallel (p) polarized radiation. The absorption enhancement was not observed under perpendicular (s) polarized radiation. Theoretical investigations indicated that the absorption enhancement was proportional to the integration of the mean square evanescent field within the film. The field integration under p-polarized radiation increased, while that under s-polarized radiation decreased as the thickness of the confined film became thinner. The maximum enhancement was observed when the film was sufficiently thinner than the penetration depth. The phenomena were experimentally investigated, and the results agreed very well with theoretical predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface-enhanced infrared absorption (SEIRA) spectra of manganese (III) tetraphenylporphine chloride (Mn(TPP)Cl) on metal island films were measured in transmission mode. Dependences of the enhancement factor of SEIRA on both the sample quantity and the type of evaporated metal were investigated by subsequently increasing the amount of Mn(TPP)Cl on gold and silver substrates. The enhancement increases nonlinearly with the amount of sample and varies slightly with the thickness of metal islands. In particular, the SEIRA transmission method presents an anomalous spectral enhancement by a factor of 579, with substantial spectral shifts, observed only for the physisorbed Mn(TPP)Cl that remained on a 3-nm-thick gold film after immersion of the substrates into acetone. A charge-transfer (CT) interaction between the porphyrinic Mn and gold islands is therefore proposed as an additional factor in the SEIRA mechanism of the porphyrin system. The number of remaining porphyrin molecules was estimated by calibration-based fluorescence spectroscopy to be 2.36×1013 molecules (i.e., ~2.910-11 mol/cm2) for a 3-nm-thick gold film, suggesting that the physisorbed molecules distributed very loosely on the metal island surface as a result of the weak van der Waals interactions. Fluorescence microscopy revealed the formation of microcrystalline porphyrin aggregates during the consecutive increase in sample solution. However, the immersion likely redistributed the porphyrin to be directly attached on the gold surface, as evidenced by an absence of porphyrinic microcrystals and the observed SEIRA enhancement. The distinctive red shift in the UV-visible spectra and the SEIRA-enhanced peaks indicate the presence of a preferred orientation in the form of the porphyrin ring inclined with respect to the gold surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal-chemistry of a series of synthetic Al-Fe3+ smectites was studied in detail using near and mid infrared spectroscopy. Chemical and NIR data indicated a quite complete range of octahedral Al for Fe3+ substitution, and therefore, the solid-solution between beidellite and nontronite end-members was continuous and complete. The wavenumbers of several infrared absorption bands were correlated with the chemistry of the synthetic smectites, providing a useful tool to constrain their structural formulae and also for assisting in assignments of similar bands in natural smectites. The Al and Fe3+ cations were shown to be randomly distributed in the octahedral sheet of synthesized smectites. Despite the high availability of iron during synthesis, generally only a small amount of tetrahedral Fe3+ was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten anionic compounds, including four acidic dyes, were used to dope polypyrrole powder. The effects of the dopants on density, optical absorption and conductivity of the polypyrroles were studied. The presence of the dopant in the conducting polymer matrix was verified by ATR-FTIR spectroscopy. Density function theory (DFT) simulation was used to understand the effect of the dopants on the solid structure, optical absorption and energy band structures. Anthraquinone-2-sulfonic acid-doped polypyrrole yielded the highest conductivity. The dye-doped polypyrrole showed an enhancement in its UV–vis optical absorption.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cylinder-planar Ge waveguides are being developed as evanescent-wave sensors for chemical microanalysis. The only non-planar surface is a cylinder section having a 300-mm radius of curvature. This confers a symmetric taper, allowing for direct coupling into and out of the waveguide's 1-mm2 end faces while obtaining multiple reflections at the central <30-μm-thick sensing region. Ray-optic calculations indicate that the propagation angle at the central minimum has a strong nonlinear dependence on both angle and vertical position of the input ray. This results in rather inefficient coupling of input light into the off-axis modes that are most useful for evanescent-wave absorption spectroscopy. Mode-specific performance of the cylinder-planar waveguides has also been investigated experimentally. As compared to a blackbody source, the much greater brightness of synchrotron-generated infrared (IR) radiation allows a similar total energy throughput, but restricted to a smaller fraction of the allowed waveguide modes. However, such angle-selective excitation results in a strong oscillatory interference pattern in the transmission spectra. These spectral oscillations are the principal technical limitation on using synchrotron radiation to measure evanescent-wave absorption spectra with the thin waveguides.