12 resultados para FAO

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report examines the science base of the relationship between diet and physical activity patterns and the major nutrition-related chronic diseases. Recommendations are made to help prevent death and disability from major nutrition-related chronic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inland fisheries contribute only about ten percent to global fish production. Asia is the leading producer of inland fish, accounting for over 80 percent of the total production. Until recently, the inland fisheries sector had taken back stage in fisheries development plans, particularly so, given the emphasis being placed on aquaculture development throughout the world, including Asia. This report evaluates the inland fishery practices in a number of Asian countries according to habitat type, role in overall foodfish supplies and development trends. Special emphasis is laid on stock enhancement in inland fisheries in Asia, and only those fisheries in which some form of stock enhancement is practised are considered in this report.

In Asia, inland fisheries are mostly rural, artisanal activities catering to rural populations and providing an affordable source of animal protein, employment and household income. Stock enhancement is an integral component of many inland fisheries. With recent developments in
artificial propagation techniques for fast-growing and desirable fish species and the consequent increased availability of seed stock, such activities are beginning to affect inland fishery production in most Asian countries. Indeed, new avenues of production such as culture-based fisheries are increasingly adopted and seen as a way forward in most countries. Inland fishery activities also have a distinct advantage in that their development is usually less resource intensive than is aquaculture.

The economic viability of stock enhancement of large lacustrine waterbodies and rivers has not been demonstrated in any of the Asian countries, the fisheries of such waterbodies being dependent on naturally recruited stocks. The most successful stock enhancements in Asia are in floodplain beels and oxbow lakes in Bangladesh where the use of small waterbodies that are not capable of supporting natural fisheries has led to culture-based fisheries having stock and recapture rates that are very high. Culture-based fisheries are not resource intensive and are community-based activities. However, their success requires major institutional changes, and these are affected by national and local governments. In general, they can be considered to have the greatest potential for further development.

A major concern related to stock enhancements in inland waters is their possible effects on biodiversity. This is for two reasons: firstly, most countries depend wholly or partially on exotic species for stock enhancement and secondly, freshwater fishes are known to be among the most threatened of vertebrates. Major studies should be undertaken to evaluate the current situation so that remedial steps can be taken, if needed, without causing serious harm to some of the stock enhancement practices that are gaining momentum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hunger and malnutrition remain among the most devastating problems facing the world’s poor and needy, and continue to dominate the health and well-being of the world’s poorest nations. Moreover, there are growing doubts as to the long-term sustainability of many existing food production systems, including capture fisheries and aquaculture, to meet the future increasing global demands.Of the different agricultural food production systems, aquaculture (the farming of aquatic animals and plants) is widely viewed as an important weapon in the global fight against malnutrition and poverty, particularly within developing countries where over 93% of global production is currently produced, providing in most instances an affordable and a much needed source of high quality animal protein, lipids, and other essential nutrients. The current article compares for the first time the development and growth of the aquaculture sector and capture fisheries by analyzing production by mean trophic level. Whereas marine capture fisheries have been feeding the world on high trophic level carnivorous fish species since mankind has been fishing the oceans, aquaculture production within developing countries has focused, by and large, on the production of lower trophic level species. However, like capture fisheries, aquaculture focus within economically developed countries has been essentially on the culture of high value-, high trophic level-carnivorous species. The long term sustainability of these production systems is questionable unless the industry can reduce its dependence upon capture fisheries for sourcing raw materials for feed formulation and seed inputs. In line with above, the article calls for the urgent need for all countries to adopt and adhere to the principles and guidelines for responsible aquaculture of the FAO Code of Conduct for Responsible Fisheries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global and Asian aquaculture have witnessed a ten-fold increase in production from 1980 to 2004. However, the relative percent contribution to production of each of the major commodities has remained almost unchanged. For example, the contribution of freshwater finfish has declined from 71 to 66 percent in Asia but has remained unchanged globally over the last 20 to 30 years. This fact has dictated trends in the use of fish as a feed for cultured stocks. The growth in the sector has gone hand in hand with an increasing dependence on fish as feed, either directly or indirectly. In a number of countries in the Asia-Pacific region, the aquaculture sector has surpassed the capture fisheries sector in its respective contributions to the gross domestic product (GDP). Aquaculture’s increased contribution to national GDPs can be taken as a clear indication of the contribution of the sector to food security and poverty alleviation. The use of finfish and other aquatic organisms as a feed source can be through direct utilization of whole or chopped raw fish in wet form, through fishmeal and fish oil in formulated feeds, and/or as live fish, although the latter is uncommon and the overall amounts used are relatively small. In the first two categories, the fish used are often termed “trash fish/low-value fish”. Although attempts have been made to define this term, all definitions have a certain degree of ambiguity and/or subjectivity. In this regional review, the amount of fish used as feed sources based on the above categories was estimated primarily from the production data, supported by assumptions on the inclusion levels of fishmeal in formulated feeds and observed feed conversion efficiencies for both formulated feeds and for stock fed trash fish/low-value fish directly. A scenario for the use of fish as feed was developed by starting from the levels of aquaculture production recorded in 2004 and assuming increases in production volumes of 10, 15 and 20 percent by 2010, respectively, for the three trajectories. In parallel, the pattern of wild fish use as feed was projected to change as fish and shrimp farmers increasingly replace farmmade feeds by incorporating trash fish/low-value fish with manufactured feeds that include fishmeal. Also, the fishmeal inclusion rates in manufactured feeds are falling slowly, and this has been incorporated into the projections. The regional review also deals with the production of fishmeal using trash fish/low-value fish in the Asia-Pacific region. Regional fishmeal production as a whole is relatively low when compared with that of major fishmeal-producing countries such as Chile, Iceland and Norway, amounting to approximately 1 million tonnes per year. However, there is a trend towards increasing the use of fish industry waste, such as from the tuna canning industry in Thailand. The fishmeal produced in the region is priced considerably lower than globally traded fishmeal, but its quality is poorer. Total fishmeal use in Asian aquaculture in 2004 was estimated as 2 388 million tonnes, the highest proportion of this being used for crustacean aquaculture (1 418 million tonnes). Based on growth predictions (to year 2010) in the sector and improvements to feed quality and management, it is expected that the quantity of fishmeal used in Asian aquaculture will be slightly less than at present. An estimated 240 000 tonnes of fish oil is used in Asian aquaculture, principally in shrimp feeds. Based on production estimates of commodities in 2004 that rely on trash fish/low-value fish as the main feed source, this regional review suggests that Asian aquaculture currently uses between 2 465 and 3 882 million tonnes, an amount that is predicted to decrease to between 1.890 and 2 795 million tonnes by 2010. The use of trash fish/low-value fish and fishmeal by the aquaculture sector has been repeatedly adjudicated as a non-sustainable practice, and globally the sector is seeking to reduce its dependence on fish as feed through improved feed management practices and development of better quality feeds and feed formulations using alternative ingredients. Over the next few years, decreases in the use of trash fish/low-value fish are also expected to be achieved through better conversion of raw materials into fishmeal and fish oil during the reduction processes. The “way forward” in addressing the issue of the use of fish as feed in aquaculture in the Asia-Pacific region includes the need for a concerted regional research thrust to reduce the use of fish as feed sources in aquaculture, as has been achieved in the animal husbandry sector. Secondly, there is a need to increase farmer awareness on the use of trash fish as feed. This is achievable, considering the similar progress that has been made by the region’s shrimp farming sector, which almost exclusively involves small-scale practitioners who are often clustered in a given locality. The analysis also suggests that the use of trash fish/low-value fish in aquaculture may be compatible with improving food security and alleviating poverty. In Asia, trash fish/low-value fish is mostly landed in areas where there are other suitable fish commodities for human consumption. To make the trash fish/low-value fish suitable and available for human consumption would involve some degree of value-adding and transportation costs, which are likely to increase the price to beyond the means of the consumer, particularly in remote rural areas. Under such a scenario, the direct or indirect use of this perishable resource as a feed source to produce a consumable commodity appears to make economic sense and appears to be the most logical use for overall human benefit. In this manner, trash fish/low-value fish contributes to food security by increasing income generation opportunities and hence contributes to poverty alleviation. Another factor that needs to be taken into account is the large numbers of artisanal fishers who harvest this raw material. The continued use of trash fish/low-value fish, therefore, allows these fishers to maintain their livelihoods1. Admittedly, this is an area that warrants more detailed investigation, from resource use, livelihoods and economic viewpoints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between traditional knowledge and intellectual property rights has become a topic for intensive debates at the national level, in various international settings and within and among different UN agencies, including the World Intellectual Property Organisation (WIPO), the UN Food and Agriculture Organisation (FAO), UNESCO, UNCTAD and the United Nations Environment Programme (UNEP). However, a consensus on a definition of traditional knowledge has yet to emerge due to persistent differences in perception. On the one hand, indigenous communities hold locally specific and holistic views of traditional knowledge, which are difficult to place within the framework of current intellectual property rights. Governments of developing countries, on the other hand, mostly focus on clearly defined aspects of traditional knowledge and their interpretation in the national interest and as expressions of national culture. Asian governments, in particular, have advocated the latter view. The Philippines provide an exception due to a tradition of recognising indigenous people as separate "cultural communities". However, the practical implementation of so-called "community intellectual rights" thus far is largely confined to access and benefit sharing rules, compensation requirements for traditional farmers and defensive protection measures such as digital libraries documenting traditional knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review addresses how the ecosystem approach to aquaculture (EAA) can optimize aquaculture-fisheries interactions considering different spatial scales from farm, aquaculture zone and watershed through to the global market. Aquaculture and fisheries are closely related subsectors with frequent interactions, largely due to the sharing of common ecosystems and natural resources. Interactions are also born from the flow of biomass from fisheries to aquaculture through fish-based feeds (e.g. fishmeal, fish oil and trashfish), through the collection of wild seed and brookstock, and genetic resources and biomass transfer from aquaculture to fisheries through culture-based fisheries (CBF) and escapees. Negative effects include modification of habitats affecting fisheries resources and activities (e.g. mangrove clearing for shrimp ponds, seabed disturbances through anchoring of aquaculture cages or pens, damage to seagrasses, alteration to reproductive habitats, biodiversity loss). Eutrophication of waterbodies due to excess nutrient release leading to anoxia and fish mortality can also impact negatively on biodiversity and wild fish stocks. Release of diseases and chemicals also imposes some threats on fisheries. Yet there could be beneficial impacts; for example, aquaculture is increasingly contributing to capture fisheries through CBF and could contribute to restore overfished stocks. Aquaculture can offer alternative livelihoods to fisherfolk, providing increased opportunity to them and also to their families, and especially to women. Aquaculture-increased production and marketing can also enhance and indirectly improve processing and market access to similar fishery products. The ecosystem approach to aquaculture (EAA) is a strategy for the management of the sector that emphasizes intersectoral complementarities by taking into account the interactions between all the activities within ecologically meaningful boundaries and acknowledging the multiple services provided by ecosystems. The main objective of this review is to understand the status of aquaculture-fisheries interactions associated with the biological, technological, social, economic, environmental, policy, legal and other aspects of aquaculture development and to analyze how these interactions are or could be addressed with an EAA. Therefore, the review involves aspects of scoping, identification of issues, prioritizing, devising management tools and plans for minimizing negative effects and optimizing positive ones within the context of social-ecological resilience, at different relevant geographical scales. Many of the management measures suggested in this review must involve not only EAA but also an ecosystem approach to fisheries (EAF), especially to deal with issues such as fishery of wild seed and the management of fisheries to produce fishmeal/oil for pelleted feeds or for direct feeding with wet fish. The implementation of EAA and EAF should help to overcome the sectoral and intergovernmental fragmentation of resource management efforts and assist in the development of institutional mechanisms and private-sector arrangements for effective coordination among various sectors active in ecosystems in which aquaculture and fisheries operate and between the various levels of government. Ecosystem-based management involves a transition from traditional sectoral planning and decision-making to the application of a more holistic approach to integrated natural resource management in an adaptive manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge has always been critically important to the development of aquaculture whether we are talking about the earliest aquaculture innovations starting in Asia or the more recent challenges confronting the sector worldwide. This panel reviewed selected national and regional case studies. Key topics for discussion include knowledge production and its communication and use (e.g. in new training and extension approaches) among the changing audiences (as aquaculture continues to attract an increasing variety of new stakeholders), and dealing with a widening set of change processes in recent times, often involving a complex mix of governance and social change challenges. We go on to suggest that aquaculture policy-makers, and stakeholders in general, need to better understand knowledge processes such as knowledge translation (implementation), knowledge networks (e.g. the role of farmers’ associations) and the use of knowledge platforms and brokers, all aimed at more effective dissemination and adoption of knowledge. Knowledge management by most stakeholders will become increasingly critical to the sustainable development of aquaculture and its movement towards attaining the goals set out in the Bangkok Declaration a decade back.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spite of all the debates and controversies, a global consensus has been reached that climate change is a reality and that it will impact, in diverse manifestations that may include increased global temperature, sea level rise, more frequent occurrence of extreme weather events, change in weather patterns, etc., on food production systems, global biodiversity and overall human well being. Aquaculture is no exception. The sector is characterized by the fact that the organisms cultured, the most diverse of all farming systems and in the number of taxa farmed, are all poikilotherms. It occurs in fresh, brackish and marine waters, and in all climatic regimes from temperate to tropical. Consequently, there are bound to be many direct impacts on aquatic farming systems brought about by climate change. The situation is further exacerbated by the fact that certain aquaculture systems are dependent, to varying degrees, on products such as fishmeal and fish oil, which are derived from wild-caught resources that are subjected to reduction processes. All of the above factors will impact on aquaculture in the decades to come and accordingly, the aquatic farming systems will begin to encounter new challenges to maintain sustainability and continue to contribute to the human food basket. The challenges will vary significantly between climatic regimes. In the tropics, the main challenges will be to those farming activities that occur in deltaic regions, which also happen to be hubs of aquaculture activity, such as in the Mekong and Red River deltas in Viet Nam and the Ganges-Brahamaputra Delta in Bangladesh. Aquaculture in tropical deltaic areas will be mostly impacted by sea level rise, and hence increased saline water intrusion and reduced water flows, among others. Elsewhere in the tropics, inland cage culture and other aquaculture activities could be impacted by extreme weather conditions, increased upwelling of deoxygenated waters in reservoirs, etc., requiring greater vigilance and monitoring, and even perhaps readiness to move operations to more conducive areas in a waterbody. Indirect impacts of climate change on tropical aquaculture could be manifold but are perhaps largely unknown. The reproductive cycles of a great majority of tropical species are dependent on monsoonal rain patterns, which are predicted to change. Consequently, irrespective of whether cultured species are artificially propagated or not, changes in reproductive cycles will impact on seed production and thereby the whole grow-out cycle and modus operandi of farm activities. Equally, such impacts will be felt on the culture of those species that are based on natural spat collection, such as that of many cultured molluscs. In the temperate region, global warming could raise temperatures to the upper tolerance limits of some cultured species, thereby making such culture systems vulnerable to high temperatures. New or hitherto non-pathogenic organisms may become virulent with increases in water temperature, confronting the sector with new, hitherto unmanifested and/or little known diseases. One of the most important indirect effects of climate change will be driven by impacts on production of those fish species that are used for reduction, and which in turn form the basis for aquaculture feeds, particularly for carnivorous species. These indirect effects are likely to have a major impact on some key aquaculture practices in all climatic regimes. Limitations of supplies of fishmeal and fish oil and resulting exorbitant price hikes of these commodities will lead to more innovative and pragmatic solutions on ingredient substitution for aquatic feeds, which perhaps will be a positive result arising from a dire need to sustain a major sector. Aquaculture has to be proactive and start addressing the need for adaptive and mitigative measures. Such measures will entail both technological and socio-economic approaches. The latter will be more applicable to small-scale farmers, who happen to be the great bulk of producers in developing countries, which in turn constitute the “backbone’ of global aquaculture. The sociological approaches will entail the challenge of addressing the potential climate change impacts on small farming communities in the most vulnerable areas, such as in deltaic regions, weighing the most feasible adaptive options and bringing about the policy changes required to implement these adaptive measures economically and effectively. Global food habits have changed over the years. We are currently in an era where food safety and quality, backed up by ecolabelling, are paramount; it was not so 20 years ago. In the foreseeable future, we will move into an era where consumer consciousness will demand that farmed foods of every form will have to include in their labeled products the green house gas (GHG) emissions per unit of produce. Clearly, aquaculture offers an opportunity to meet these aspirations. Considering that about 70 percent of all finfish and almost 100 percent of all molluscs and seaweeds are minimally GHG emitting, it is possible to drive aquaculture as the most GHG-friendly food source. The sector could conform to such demands and continue to meet the need for an increasing global food fish supply. However, to achieve this, a paradigm shift in our seafood consumption preferences will be needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18:3n-3 (ALA) bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), and to determine the overall pathway kinetics. Using rat hepatocytes (FaO) as model cells, it was established that a maximum 20:5n-3 (EPA) production from 50 mM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in the ALA concentration from 0 up to 125mM lead to a proportional increase in EPA, without concomitant increase in further elongated or desaturated products, such as 22:5n-3 (DPA) and 22:6n-3 (DHA) in 3 day incubations. Of interest, ALA bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance (FAMB) method on cell culture system (cells with medium) enabled quantifying the apparent enzymatic activities for the biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50% (Km) of the theoretical maximal (Vmax = 3654 mmol.g21 of cell protein.hour21) Fads2 activity on ALA can be achieved with 81 mM initial ALA. Interestingly, the apparent activity of Elovl2 (20:5n-3 elongation) was the slowest amongst other biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Global Conference on Aquaculture 2010 brought together a wide range of experts and important stakeholders and reviewed the present status and trends in aquaculture development, evaluated the progress made in the implementation of the 2000 Bangkok Declaration and Strategy, addressed emerging issues relevant to aquaculture development, assessed opportunities and challenges for future aquaculture development and built consensus on advancing aquaculture as a global, sustainable and competitive food production sector. This volume, yet another joint effort of FAO and NACA, brings the outcome of the Global Conference on Aquaculture 2010, the much-needed clear and comprehensive technical information on how aquaculture could be mobilized to alleviate global poverty and improve food and nutrition security in the coming decades.