9 resultados para Explants

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Murine milk protein gene expression requires insulin, hydrocortisone, and prolactin; however, the role of insulin is not well understood. This study, therefore, examined the requirement of insulin for milk protein synthesis. Mammary explants were cultured in various combinations of the lactogenic hormones and global changes in gene expression analysed using Affymetrix microarray. The expression of 164 genes was responsive to insulin, and 18 were involved in protein synthesis at the level of transcription and posttranscription, as well as amino acid uptake and metabolism. The folate receptor gene was increased by fivefold, highlighting a potentially important role for the hormone in folate metabolism, a process that is emerging to be central for protein synthesis. Interestingly, gene expression of two milk protein transcription factors, Stat5a and Elf5, previously identified as key components of prolactin signalling, both showed an essential requirement for insulin. Subsequent experiments in HCll cells confirmed that Stat5a and Elf5 gene expression could be induced in the absence of prolactin but in the presence of insulin. Whereas prolactin plays an essential role in phosphorylating and activating Stat5a, gene expression is only induced when insulin is present. This indicates insulin plays a crucial role in the transcription of the milk protein genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammary explants can be hormonally stimulated to mimic the biochemical changes that occur during lactogenesis. Previous studies using mammary explants concluded that the addition of exogenous macromolecules were required for mammary epithelial cells to remain viable in culture. The present study examines the survival of mammary explants from the dairy cow using milk protein gene expression as a functional marker of lactation and cell viability. Mammary explants cultured from late pregnant cows mimicked lactogenesis and showed significantly elevated milk protein gene expression after 3 days of culture with lactogenic hormones. The subsequent removal of exogenous hormones from the media for 10 days resulted in the down-regulation of milk protein genes. During this time, the mammary explants remained hormone responsive, the alveolar architecture was maintained and the expression of milk protein genes was re-induced after a second challenge with lactogenic hormones. We report that a population of bovine mammary epithelial cells have an intrinsic capacity to remain viable and hormone responsive for extended periods in chemically defined media without any exogenous macromolecules. In addition, we found mammary explant viability was dependent on de novo protein and RNA synthesis. Global functional microarray analysis showed that differential expression of genes involved in energy production, immune responses, oxidative stress and apoptosis signalling might contribute to cell survival. As the decline in milk production in dairy cattle after peak lactation results in considerable economic loss, the identification of novel survival genes may be used as genetic markers for breeding programmes to improve lactational persistency in dairy cows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane nanotubes (MNTs) are newly discovered cellular extensions that are either blind-ended or can connect widely separated cells. They have predominantly been investigated in cultured isolated cells, however, previously we were the first group to demonstrate the existence of these structures in vivo in intact mammalian tissues. We previously demonstrated the frequency of both cell–cell or bridging MNTs and blind-ended MNTs was greatest between major histocompatibility complex (MHC) class II+ cells during corneal injury or TLR ligand-mediated inflammation. The present study aimed to further explore the dynamics of MNT formation and their size, presence in another tissue, the dura mater, and response to stress factors and an active local viral infection of the murine cornea. Confocal live cell imaging of myeloid-derived cells in inflamed corneal explants from Cx3cr1GFP and CD11ceYFP transgenic mice revealed that MNTs form de novo at a rate of 15.5 μm/min. This observation contrasts with previous studies that demonstrated that in vitro these structures originate from cell–cell contacts. Conditions that promote formation of MNTs include inflammation in vivo and cell stress due to serum starvation ex vivo. Herpes simplex virus-1 infection did not cause a significant increase in MNT numbers in myeloid cells in the cornea above that observed in injury controls, confirming that corneal epithelium injury alone elicits MNT formation in vivo. These novel observations extend the currently limited understanding of MNTs in live mammalian tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growing goal in the field of metabolism is to determine the impact of genetics on different aspects of mitochondrial function. Understanding these relationships will help to understand the underlying etiology for a range of diseases linked with mitochondrial dysfunction, such as diabetes and obesity. Recent advances in instrumentation, has enabled the monitoring of distinct parameters of mitochondrial function in cell lines or tissue explants. Here we present a method for a rapid and sensitive analysis of mitochondrial function parameters in vivo during zebrafish embryonic development using the Seahorse bioscience XF 24 extracellular flux analyser. This protocol utilizes the Islet Capture microplates where a single embryo is placed in each well, allowing measurement of bioenergetics, including: (i) basal respiration; (ii) basal mitochondrial respiration (iii) mitochondrial respiration due to ATP turnover; (iv) mitochondrial uncoupled respiration or proton leak and (iv) maximum respiration. Using this approach embryonic zebrafish respiration parameters can be compared between wild type and genetically altered embryos (mutant, gene over-expression or gene knockdown) or those manipulated pharmacologically. It is anticipated that dissemination of this protocol will provide researchers with new tools to analyse the genetic basis of metabolic disorders in vivo in this relevant vertebrate animal model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies using the mouse showed an inverse correlation between the Caveolin 1 gene expression and lactation, and this was regulated by prolactin. However, current study using mammary explants from pregnant mice showed that while insulin (I), cortisol (F) and prolactin (P) resulted in maximum induction of the β-casein gene, FP and IFP resulted in the downregulation of Caveolin 1. Additionally, IF, FP and IFP resulted in the downregulation of Caveolin 2. Immunohistochemistry confirmed localisation of Caveolin 1 specific to myoepithelial cells and adipocytes. Comparative studies with the tammar wallaby showed Caveolin 1 and 2 had 70-80% homology with the mouse proteins. However, in contrast to the mouse, Caveolin 1 and 2 genes showed a significantly increased level of expression in the mammary gland during lactation. The regulation of tammar Caveolin 1 and 2 gene expression was examined in mammary explants from pregnant tammars, and no significant difference was observed either in the absence or in the presence of IFP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Worldwide, HIV-1 infects millions of people annually, the majority of whom are women. To establish infection in the female reproductive tract (FRT), HIV-1 in male ejaculate must overcome numerous innate and adaptive immune factors, traverse the genital epithelium, and establish infection in underlying CD4(+) target cells. How the virus achieves this remains poorly defined. By utilizing a new technique, we define how HIV-1 interacts with different tissues of the FRT using human cervical explants and in vivo exposure in the rhesus macaque vaginal transmission model. Despite previous claims of the squamous epithelium being an efficient barrier to virus entry, we reveal that HIV-1 can penetrate both intact columnar and squamous epithelial barriers to depths where the virus can encounter potential target cells. In the squamous epithelium, we identify virus entry occurring through diffusive percolation, penetrating areas where cell junctions are absent. In the columnar epithelium, we illustrate that virus does not transverse barriers as well as previously thought due to mucus impediment. We also show a statistically significant correlation between the viral load of inocula and the ability of HIV-1 to pervade the squamous barrier. Overall, our results suggest a diffusive percolation mechanism for the initial events of HIV-1 entry. With these data, we also mathematically extrapolate the number of HIV-1 particles that penetrate the mucosa per coital act, providing a biological description of the mechanism for HIV-1 transmission during the acute and chronic stages of infection.