4 resultados para Exothermic

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

MgAl2O4 (spinel) is considered as a commercially important ceramic reinforcement in MMC fabrication because of the possible tailorable properties imparted with Al for many applications. Generally, any oxygen source, i.e., the dissolved oxygen, or pure oxygen atmosphere or atmospheric oxygen is sufficient for the formation of MgAl2O4 in Al–Mg alloy. Among all the reactive oxygen sources, the reactivity of SiO2 with Al alloy is found to be higher. Amorphous silica is highly reactive in nature compared to crystalline silica. The present study has examined the thermodynamics of MgAl2O4 formation in Al–Mg alloy by amorphous silica sources with the aid of differential thermal analyzer (DTA) and the simulated experiments. The dissolution of Si and the formation of MgAl2O4 are detected as the endothermic peak and the immediate exothermic peak respectively in DTA curves and the presence of MgAl2O4 is confirmed by the XRD of the simulated sample. The MgO formed due to the oxidation of Mg in Al–Mg alloy has been found to influence the MgAl2O4 formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study has examined the thermodynamics of MgAl2O4 and MgO formations in Al–Mg alloy/quartz (>99% crystalline silica) through differential thermal analysis (DTA). The formation of MgAl2O4 and MgO is detected as exothermic peaks in the heat flow curve and the reaction is confirmed by the Si dissolution peaks observed during the reheating of samples and SEM analysis of the reacted sample. The presence of MgAl2O4 and MgO is confirmed in the XRD analysis of the reacted sample. The study has enabled the production of nano sized MgAl2O4 and MgO crystals at the interface of Al–Mg alloy and quartz. The reaction between them is found to be influenced by the oxidation of Mg, which is reduced by increasing heating rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of oxidative stabilization and carbonization processes on the structure, mass and mechanical properties of polyacrylonitrile (PAN) precursor fibers was analyzed. A gradual densification of the fibers occurring from mass loss, decrease in fiber diameter and increase in density were observed after stabilization at a maximum temperature of 255 °C and carbonization at a maximum temperature of 800 °C. The tensile strength and modulus of the fibers were found to decrease after stabilization but then increased after low temperature carbonization. The thermal processing of the precursor fibers affected their mode of failure after tensile loading, changing from a ductile type of failure to a brittle type. The type of failure correlated well with the crystal structure changes in the fibers. Whilst the PAN precursor fiber started to exotherm above 225 °C in air, no prominent exothermic reaction was measured in the carbonized fibers in air up to 430 °C. The aromatization index of stabilized fiber was calculated to be ∼66%, and that of carbonized fiber was ∼99%. FTIR studies indicated that the variation in the chemical structure of the fibers with the stabilization of the fibers. Radial heterogeneity in the stabilized fibers was observed however it was not promoted to the carbonized fibers. Finally, a method to calculate mass retention of PAN precursor fiber after heat treatment was developed, and the calculated percentage mass retained of the precursor fiber after oxidation and carbonization were found to be 81% and 51%, respectively. . This study proposes an effective method to calculate the percentage of mass retained by precursor fibers after stabilization and low temperature carbonization to provide a model for evaluating carbon fiber yield from a given amount of fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fiber is an advanced material with high tensile strength and modulus, ideally suited for light weight applications. Carbon fiber properties are directly dependent on all aspects of production, especially the process step of thermal stabilization. Stabilization is considered to be one of the most critical process steps. Moreover, the stabilization process is the most energy consuming, time consuming and costly step. As oxidation is an exothermic process, constant airflow to uniformly remove heat from all tows across the towband is indispensable. Our approach is to develop an intelligent computational system that can construct an optimal Computational Fluid Dynamics (CFD) solution. In this study, an electrical heater has been designed by CFD modeling and intelligently controlled. The model results show that the uniform airflow and minimum turbulence kinetic energy can be achieved by combining intelligent system technology with CFD analysis strategy.