36 resultados para Energy dispersive X ray analysis

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, Ti-16Sn-4Nb alloy was prepared by mechanical alloying (MA). Optical microscopy, scanning electron microscopy combined with energy dispersive X-ray analysis (SEM-EDX), and X-ray diffraction analysis (XRD) were used to characterise the phase transformation and the microstructure evolution. Results indicated that ball milling to 8 h led to the formation of a supersaturated hcp α-Ti and partial amorphous phase due to the solid solution of Sn and Nb into Ti lattice. The microstructure of the bulk sintered Ti-16Sn-4Nb alloy samples made from the powders at shorter ball milling times, i.e. 20 min- 2 h, exhibited a primary α surrounded by a Widmanstätten structure (transformed β); while in the samples made from the powders at longer ball milling times, i.e. 5- 10 h, the alloy evolved to a microstructure with a disordered and fine β phase dispersed homogeneously within the α matrix. These results contribute to the understanding of the microstructure evolution in alloys of this type prepared by powder metallurgy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased fuel economy, combined with the need for the improved safety has generated the development of new hot-rolled high-strength low-alloy (HSLA) and multiphase steels such as dual-phase or transformation-induced plasticity steels with improved ductility without sacrificing strength and crash resistance. However, the modern multiphase steels with good strength-ductility balance showed deteriorated stretch-flangeability due to the stress concentration region between the soft ferrite and hard martensite phases [1]. Ferritic, hot-rolled steels can provide good local elongation and, in turn, good stretch-flangeability [2]. However, conventional HSLA ferritic steels only have a tensile strength of not, vert, similar600 MPa, while steels for the automotive industry are now required to have a high tensile strength of not, vert, similar780 MPa, with excellent elongation and stretch-flangeability [1]. This level of strength and stretch-flangeability can only be achieved by precipitation hardening of the ferrite matrix with very fine precipitates and by ferrite grain refinement. It has been suggested that Mo [3] and Ti [4] should be added to form carbides and decrease the coiling temperature to 650 °C since only a low precipitation temperature can provide the precipitation refinement [4]. These particles appeared to be (Ti, Mo)C, with a cubic lattice and a parameter of 0.433 nm, and they were aligned in rows [4]. It was reported [4] that the formation of these very fine carbides led to an increase in strength of not, vert, similar300 MPa. However, the detailed analysis of these particles has not been performed to date due to their nanoscale size. The aim of this work was to carry out a detailed investigation using atom probe tomography (APT) of precipitates formed in hot-rolled low-carbon steel containing additions Ti and Mo.

The investigated low-carbon steel, containing Fe–0.1C–1.24Mn–0.03Si–0.11Cr–0.11Mo–0.09Ti–0.091Al at.%, was produced by hot rolling. The processing route has been described in detail elsewhere [5] European Patent Application, 1616970 A1, 18.01.2006.[5]. The microstructure was characterised by transmission electron microscopy (TEM) on a Philips CM 20, operated at 200 kV using thin foil and carbon replica techniques. Qualitative energy dispersive X-ray spectroscopy (EDXS) was used to analyse the chemical composition of particles. The atomic level of particle characterisation was performed at the University of Sydney using a local electrode atom probe [6]. APT was carried out using a pulse repetition rate of 200 kHz and a 20% pulse fraction on the sample with temperature of 80 K. The extent of solute-enriched regions (radius of gyration) and the local solute concentrations in these regions were estimated using the maximum separation envelope method with a grid spacing of 0.1 nm [7]. A maximum separation distance between the atoms of interest of dmax = 1 nm was used.

The microstructure of the steel consisted of two types of fine ferrite grains: (i) small recrystallised grains with an average grain size of 1.4 ± 0.2 μm; and (ii) grains with a high dislocation density (5.8 ± 1.4 × 1014 m−2) and an average grain size of 1.9 ± 0.1 μm in thickness and 2.7 ± 0.1 μm in length (Fig. 1a). Some grains with high dislocation density displayed an elongated shape with Widmanstätten side plates and also the formation of cells and subgrains (Fig. 1a). The volume fraction of recrystallised grains was 34 ± 8%.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of cassava peel waste for Ni-sorption is evaluated in this work. The biosorbents are characterized by Boehm titration, Fourier transform-infra red (FTIR) spectroscopy, Nitrogen sorption, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis (e.g. elemental mapping) and X-ray photoelectron spectroscopy (XPS). Adsorption experiments are performed in batch mode at 30 °C (303.15 K), 45 °C (318.15 K) and 60 °C (333.15 K). The performance of several temperature dependence forms of isotherm models e.g. Langmuir, Freundlich, Sips and Toth to represent the adsorption equilibrium data is evaluated and contrasted. Sips model demonstrates the best fitting with the maximum uptake capacity for Ni(II) ions of 57 mg/g (0.971 mmol/g) at pH 4.5. For kinetic data correlation, pseudo-second order model shows the best representation. The chemisorption mechanism and thermodynamics aspect are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic techniques are widely used in forensic laboratories for quantitative and qualitative analysis. This artictle provides an overview of the spectroscopic techniques most commonly encountered in forensic laboratories. Infrared spectroscopy, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy energy dispersive X-ray spectroscopy, and nuclear magnetic resonance spectroscopy are used mainly for identification or characterization of substances. Visible and ultraviolet spectroscopy, atomic absorption spectroscopy and atomic emission spectroscopy are used mainly for measurement of substances or elements. Some techniques can be used for both identification and measurement. Related techniques such as molecular fluorescence, chemiluminescence and synchrotron techniques are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray diffraction line profile analysis has been used to study the microstructure of (Ill) oriented gold and platinum thin films deposited by thermal evaporation and DC magnetron sputtering. In addition to crystallite size broadening, the profiles from these films displayed broadening arising from dislocations. A parallel investigation, using transmission electron microscopy (TEM) was undertaken to study the nature of dislocations formed, and to provide information on the dimensions of the crystallite columns in the films. X-ray data were collected at room temperature to determine the anisotropy of the broadening with (hkl), using a Siemens D5000 powder diffractometer (CuKa radiation) and two high-resolution synchrotron instruments (BM 16 at the ESRF [A=0.35A] and station 2.3 at the Daresbury laboratory. Two approaches to instrument deconvolution were investigated; Fourier deconvolution and fundamental parameters profile fitting, using Lab6 as a reference material to determine the instrument profile function. After removal of the crystallite size broadening contribution from the measured integral breadths, the residual microstrain broadening was modelled assuming dislocations based on a FCC a/2<110>{ Ill} slip system. The results of the X-ray analysis agreed with dark field TEM micrographs, which showed that many of the crystallites contained dislocations of mixed character (screw- edge).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recognition of differences between regulated large-scale mass manufactured products and the uncontrolled cultivation of tobaccos for illicit purposes plays a significant role within identification of provenance. This research highlights X-ray fluorescence and Fourier transform infrared spectroscopy as useful analytical techniques for the rapid identification of tobacco samples of unknown provenance. Identification of key discriminative features within each technique allowed for the development of typical characteristic profiles for each type of tobacco. Analysis using X-ray fluorescence highlights chlorine, potassium, calcium and iron as key elemental indicators of tobacco provenance. Significant levels of chlorine seen within Snüs samples prompted attempts to visualise chlorine containing regions and structures within the sample. Scanning electron microscopy images showed crystalline structures visible within the Snüs tobacco, structures which Energy dispersive X-ray spectroscopy qualitatively confirmed to contain chlorine. Chloride levels within Snüs samples were quantified using ion chromatography with levels found to range between 0.87mgmL‾¹ and 1.28mg. Additionally, FTIR indicated that absorbances attributed to carbonyl stretching at 1050-1150cm‾¹, alkane bending at 1350-1480cm‾¹and amide I stretching at 1600-1700cm‾¹ highlighting a spectral fingerprint region that allowed for the clear differentiation between different types of tobaccos using PCA analysis, but was limited by differentiation between provenance of cigarettes and hand rolled tobacco. X-ray fluorescence and Fourier transform infrared spectroscopy yielded different information with regards tobacco discrimination and provenance, however both methods overall analysis time and cost reduced indicating usefulness as potential handheld analytical techniques in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated, in an effort to identify the causes of such premature failure of the component. The manufacturing and the operating conditions were documented. Analytical tools were used, including scanning electron microscopy with energy dispersive X-ray capability, X-ray diffraction, and instrumented microhardness testing. Preliminary observations showed a microstructure of coarse tempered martensite, and a considerably rough surface with porosity and cracks. A detailed analysis of crack initiation sites identified sulfur inclusions in the subsurface, underneath the coating. A further revision of the processing conditions revealed that a sulfur-impregnated grinding stone had been used to polish the die. The chemical composition of such grinding stone matched that of the inclusions found in the subsurface of the failed component. Thus, searched causes of premature failure could be discussed on the lights of the present findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X~ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35 % andlor with the small pore size of about 70 μ are close to those of human cancellous bones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloy ZE41, used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This paper investigates the mechanism of corrosion and the interaction between the grain boundary intermetallic phases, the Zr-rich regions within the grains and the bulk Mg-rich matrix. The results of optical and scanning electron microscopy (SEM) together with energy-dispersive X-ray (EDX) and atomic force microscopy (AFM) potential map measurements have shown the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment, indicating that the Zr-rich regions play a distinct role in the early stages of corrosion in this alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of blending two different materials with a medium density polyethylene for use as pipe coatings is presented. The influence of such blending on properties such as cathodic disbondment (CD) and wet adhesion on steel is investigated. The components blended include a functionalised polyethylene (PE) containing the polar functionality, maleic anhydride (MAH) and an amorphous elastomer, ethylene-propylene-diene terpolymer (EPDM). It was found that modification of PE with small amount (2.5–3 wt%) of either blended MAH-g-PE or EPDM resulted in a significant improvement in CD performance and wet adhesion strength. The mode of failure and disbondment mechanism was investigated using energy dispersive X-ray spectroscopy (EDXS) and X-ray photoelectron spectroscopy (XPS). The greater resistance of migration of sodium ions increases with the incorporation of the modifiers, and it is proposed that this results in an increase in CD performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interfacial chemistry and adhesion between titanium dioxide (TiO2) nanotube layers and titanium (Ti) substrates were studied in this Article. TiO2 nanotube layers were produced on pure Ti by anodization and annealed in air for different time durations. The adhesion of the TiO2 nanotube layers was then investigated by Rockwell C indentation test. Results show that adhesion of TiO2 nanotube layers improved with the extension of annealing time. This improvement in adhesion of TiO2 nanotube layers was analyzed from the viewpoint of interfacial chemistry using energy dispersive X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). It suggests that more Ti-O bonds formed in the interface after annealing, and this led to the improved adhesion of the TiO2 nanoube layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg alloy AZ31 is an attractive candidate for coronary artery stents, as it possesses excellent biocompatibility in human body and good mechanical properties. However, AZ31 magnesium alloys generally have poor corrosion resistance in the body environment. This paper reports on the early stages of an investigation into the corrosion mechanism and the morphology of corrosion of AZ31 in simulated body fluid (SBF). The investigation will also consider ways of improving corrosion resistance of this alloy in SBF through the use of ionic liquids. The results to date have shown that AZ31 suffers severe localized pitting corrosion in SBF. The pits mainly develop adjacent to the Al-Mn intermetallic second phase in the α matrix. Energy Dispersive X-Ray Spectroscopy results revealed the presence of Mg, O, Ca, and P in the layer of corrosion product. Treatment of the AZ31 alloy prior to corrosion testing in SBF with the ionic liquid trimethyl (butyl) phosphonium diphenyl phosphate (P1444DPP) produced some increase in the corrosion resistance of the alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effect of both the mixing technique and heating rate during cure on the dispersion of montmorillonite (MMT) clay in an epoxy resin. The combination of sonication and using a 10. °C/min heating rate during cure was found to facilitate the dispersion of nanoclay in epoxy resin. These processing conditions provided a synergistic effect, making it possible for polymer chains to penetrate in-between clay galleries and detach platelets from their agglomerates. As the degree of dispersion was enhanced, the flexural modulus and strength properties were found to decrease by 15% and 40%, respectively. This is thought to be due to individual platelets fracturing in the nanocomposite. Complementary techniques including X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and optical microscopy were essential to fully characterise localised and spatial regions of the clay morphologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion protection by lanthanum hydroxy cinnamate (La(4OH-cin)3) in a polyurethane based varnish coating for mild steelhas been investigated. Filiform scribe tests, energy-dispersive X-ray spectroscopy (EDXS) and potentiodynamic polarisation (PP)techniques have been powerful tools to better understand the corrosion process at defects and under the coating. Filiform scribetests showed that La(4OH-cin)3, as a pigment in a coating, inhibited the initiation and propagation of both delamination and filiformcorrosion (FFC) on coated steel. The PP experiments provided an insight into the fundamental mechanism of FFC. The resultssuggest that La(4OH-cin)3 behaves as a mixed inhibitor and stifles the initiation and propagation of FFC. In this paper, the theory ofdelamination leading to FFC and the likely mechanism of inhibition by the La(4OH-cin)3 will be discussed.