28 resultados para Energy Harvesting

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper looks at the City of Melbourne's new office development CH2 as a case study of world class energy performance. In particular, the integrated design of conventionally independent systems has led to the potential to deliver significant savings to the Council and to deliver better environmental conditions to building occupants that in turn may contribute to satisfaction, well-being and Productivity. It is concluded that this project has the potential
to be an iconic example of effective implementation of ESD (environmental sustainable design) principles and therefore act as a demonstration project to others. Energy efficiency of more than 50% of current benchmarks for Melbourne is effected. Energy harvesting is defined as arising from squander, waste and nature, which is a new concept introduced in this paper to better describe the design decision process.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To decrease the consumption of fossil fuels, research has been done on utilizing low grade heat, sourced from industrial waste streams. One promising thermoenergy conversion system is a thermogalvanic cell; it consists of two identical electrodes held at different temperatures that are placed in contact with a redox-based electrolyte [1, 2]. The temperature dependence of the direction of redox reactions allows power to be extracted from the cell [3, 4]. This study aims to increase the power conversion efficiency and reduce the cost of thermogalvanic cells by optimizing the electrolyte and utilizing a carbon based electromaterial, reduced graphene oxide, as electrodes. Thermal conductivity measurements of the K3Fe(CN)6/K4Fe(CN)6 solutions used, indicate that the thermal conductivity decreases from 0.591 to 0.547 W/m K as the concentration is increased from 0.1 to 0.4 M. The lower thermal conductivity allowed a larger temperature gradient to be maintained in the cell. Increasing the electrolyte concentration also resulted in higher power densities, brought about by a decrease in the ohmic overpotential of the cell, which allowed higher values of short circuit current to be generated. The concentration of 0.4 MK3Fe(CN)6/K4Fe(CN)6 is optimal for thermal harvesting applications using R-GO electrodes due to the synergistic effect of the reduction in thermal flux across the cell and the enhancement of power output, on the overall power conversion efficiency. The maximum mass power density obtained using R-GO electrodes was 25.51 W/kg (three orders of magnitude higher than platinum) at a temperature difference of 60 _C and a K3Fe(CN)6/K4Fe(CN)6 concentration of 0.4 M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Randomly oriented poly(vinylidene fluoride) (PVDF) nanofibre webs prepared by a needleless electrospinning technique were used as an active layer for making mechanical-to-electrical energy harvest devices. With increasing the applied voltage in the electrospinning process, a higher b crystal phase was formed in the resulting PVDF nanofibres, leading to enhanced mechanical-to-electrical energy conversion of the devices. The power generated by the nanofibre devices was able to drive a miniature Peltier cooler, which may be useful for the development of mechanically driven cooling textile. In addition, the needleless electrospinning also showed great potential in the production of nanofibres on a large scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents design and simulation of a circular meander dipole antenna at the industrial, scientific, and medical band of 915 MHz for energy scavenging in a passive head-mountable deep brain stimulation device. The interaction of the proposed antenna with a rat body is modeled and discussed. In the antenna, the radiating layer is meandered, and a FR-4 substrate is used to limit the radius and height of the antenna to 14 mm and 1.60 mm, respectively. The resonance frequency of the designed antenna is 915 MHz and the bandwidth of 15 MHz at a return loss of -10 dB in free space. To model the interaction of the antenna with a rat body, two aspects including functional and biological are considered. The functional aspect includes input impedance, resonance frequency, gain pattern, radiation efficiency of the antenna, and the biological aspect involves electric field distribution, and SAR value. A complete rat model is used in the finite difference time domain based EM simulation software XFdtd. The simulated results demonstrate that the specific absorption rate distributions occur within the skull in the rat model, and their values are higher than the standard regulated values for the antenna receiving power of 1W.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A circular planar inverted-F antenna (PIFA) is designed and simulated at the industrial, scientific, and medical (ISM) band of 915 MHz for energy harvesting in a head-mountable deep brain stimulation device. Moreover, a rectifier is designed, and also the interaction of the PIFA with a rat head model is investigated. In the proposed PIFA, the top radiating layer is meandered, and a substrate of FR-4 is used. The radius and the height of the antenna are 10 mm and 1.8 mm, respectively. The bottom conductive layer works as a ground plate, and a superstrate of polyethylene reduces the electromagnetic penetration into the rat head. The resonance frequency of the designed antenna is 915 MHz with a bandwidth of 18 MHz at the return loss of -10 dB in free space. The antenna parameters (e.g. reflection coefficient, gain, radiation efficiency), electric field distribution, and SAR value are evaluated within a seven-layer rat head model by using the finite difference time domain EM simulation software XFdtd. The interactions of the antenna and the rat head model are studied in both functional and biological aspects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy harvesting for wireless sensors and consumer electronic devices can significantly improve reliability and environmental sustainability of the devices. This is achieved by eliminating the dependency of these devices on rechargeable batteries, using clean and/or renewable energy sources. Energy harvesting from various energy sources is widely discussed among researchers and entrepreneurs, including harvesting energy from microscale phenomena. This topic is receiving increasing attention due to the rising numbers of low-power consumer electronic devices and wireless sensors, but also the increasing demand for more convenient and available devices. This article presents a feasibility study for an energy harvesting system based on a human's breathing motion. The system is based on a modified pants belt that is integrated with an array of piezoelectric films and a harvesting circuit. The proposed energy harvester generates electricity from reciprocal abdominal motions of the human subject. In comparison with existing breathing-based energy harvesters, the proposed system allows for safe and convenient energy harvesting with no influence on the natural movement of the lungs. Stomach pressure analysis and measurement, as well as the design and simulations of the proposed harvester, are presented. © 2013 The Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Development of an optimum rectenna for radio frequency energy harvesting in miniature head-mountable deep brain stimulation (DBS) devices. The designed miniature rectenna can operate a DBS device without battery for murine preclinical research. The battery-less operation of the device eliminates battery related difficulties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of an energy harvesting circuit for use with a head-mountable deep brain stimulation (DBS) device. It consists of a circular planar inverted-F antenna (PIFA) and a Schottky diode-based Cockcroft-Walton 4-voltage rectifier. The PIFA has the volume of π × 10(2) × 1.5 mm(3), resonance frequency of 915 MHz, and bandwidth of 16 MHz (909-925 MHz) at a return loss of -10 dB. The rectifier offers maximum efficiency of 78% for the input power of -5 dBm at a 5 kΩ load resistance. The developed rectenna operates efficiently at 915 MHz for the input power within -15 dBm to +5 dBm. For operating a DBS device, the DC voltage of 2 V is recorded from the rectenna terminal at a distance of 55 cm away from a 26.77 dBm transmitter in free space. An in-vitro test of the DBS device is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermogalvanic cells are capable of converting waste heat (generated as a by-product of almost all human activity) to electricity. These devices may alleviate the problems associated with the use of fossil fuels to meet the world's current demand for energy. This review discusses the developments in thermogalvanic systems attained through the use of nano-carbons as the electrode materials. Advances in cell design and electrode configuration that improve performance of these thermo converters and make them applicable in a variety of environments are also summarized. It is the aim of this review to act as a channel for further developments in thermogalvanic cell design and electrode engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectrochemical cells are increasingly promising devices for harvesting waste heat, offering an alternative to the traditional semiconductor-based design. Advancement of these devices relies on new redox couple/electrolyte systems and an understanding of the interplay between the different factors that dictate device performance. The Seebeck coefficient (Se) of the redox couple in the electrolyte gives the potential difference achievable for a given temperature gradient across the device. Prior work has shown that a cobalt bipyridyl redox couple in ionic liquids (ILs) displays high Seebeck coefficients, but the thermoelectrochemical cell performance was limited by mass transport. Here we present the Se and thermoelectrochemical power generation performance of the cobalt couple in novel mixed IL/molecular solvent electrolyte systems. The highest power density of 880 mW m-2, at a ΔT of 70 °C, was achieved with a 31 (v/v) MPN-[C2mim][B(CN)4] electrolyte combination. The significant power enhancement compared to the single solvent or IL systems results from a combination of superior ionic conductivity and higher diffusion coefficients, shown by electrochemical analysis of the different electrolytes. This is the highest power output achieved to-date for a thermoelectrochemical cell utilising a high boiling point redox electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents design, implementation, and evaluation of a miniature rectenna for energy harvesting applications. The rectenna produces DC power from a distant microwave energy transmitter. The generated DC power is then utilized to operate a head-mountable deep brain stimulation device. The rectenna consists of a miniature three-layer planar inverted-F antenna and a Schottky-diode-based bridge rectifier. The antenna has a volume of π × 6 × 1.584 mm3, a resonance frequency of 915 MHz with a simulated bandwidth of 18 MHz (907-925 MHz), and a measured bandwidth of 18 MHz (910-928 MHz) at the return loss of -10 dB. A dielectric substrate of FR-4 of εr = 4.5 and δ = 0.02 is used for simulation and fabrication of the antenna and the rectifier due to its low cost. An L-section impedance matching circuit is employed between the antenna and the rectifier to reduce the mismatch loss. The impedance matching circuit operates as a low-pass filter eliminating higher order harmonics. A deep brain stimulation device is successfully operated by the rectenna at a distance of 20 cm away from a microwave energy transmitter of power 26.77 dBm. The motivation of this paper includes creation of a deep brain stimulation device that operates indefinitely without a battery. From the application standpoint, the developed energy harvesting rectenna facilitates long-term deep brain stimulation of laboratory animals for preclinical research investigating neurological disorders.