6 resultados para Enantiomers

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The β7 integrins α4β7 and Eβ7 play key roles in forming the gut-associated lymphoid tissue, and contribute to chronic inflammation. The α4β7 integrin-mediated adhesion of activated lymphocytes is largely due to a transient increase in avidity from ligand-induced clustering of α4β7 at the cell-surface. Here, we report that L and D enantiomers of a cell-permeable peptide YDRREY encompassing residues 735-740 of the cytoplasmic tail of the β7 subunit inhibit the adhesion of T cells to β7 integrin ligands. The YDRREY peptide abrogated mucosal addressin cell adhesion molecule-1-induced clustering of α4β7 on the surface of activated T cells. A mutated form of the YDRREY peptide carrying either single or double conservative mutations at Tyr735Phe and Tyr740Phe was unable to inhibit T cell adhesion, suggesting that both tandem tyrosines are critical for activity. The YDRREY peptide was bound and phosphorylated by focal adhesion kinase and src, which may serve to sequester cytoskeletal proteins to the cytoplasmic domain of 4β7. The quasi-palindromic sequence YDRREY within the β7 cytoplasmic tail constitutes a cell adhesion regulatory domain that modulates the interaction of β7-expressing leukocytes with their endothelial and epithelial ligands. Cell-permeable peptidomimetics based on this motif have utility as anti-inflammatory reagents for the treatment of chronic inflammatory disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1,3 dipolar cycloaddition between carbonyl ylids (generated from cyclobutene epoxides flanked by esters) and norbornyl alkenes – the ACE reaction – offers a facile method for the construction of polynorbornyl molecular frameworks. This reaction has, as described in this dissertation, underpinned the construction of molecular frameworks that have peptides and amino acids attached. Such highly rigid peptide-frameworks are of use in the field of peptidomimetics; the template molecule governs the final positioning of any attached groups such that a precise arrangement of amino acids can be achieved without the need to construct entire proteins. In the course of any ACE reaction the ester flanked cyclobutene epoxide is transformed to a 1,3 dipole, the esters serve to stablise this reactive intermediate and are as a consequence incorporated in the reaction product. Modification of these esters provides pseudo-equatorial points for peptide attachment. These methyl esters were replaced with tert-butyl esters to provide pseudo-axial attachment points that could be selectively addressed. The optimal strategy for peptide-framework construction involved direct condensation of carboxyl protected amino acids to bicyclo[2.2.1]hept-5-ene-2-endo-carboxylic acid as well as condensation of amino acids to cyclobutene epoxides derived from this acid. The ACE reaction of (±) bicycloheptene-2-endo-carboxylic acid derivatives with cyclobutene epoxides synthesised from such racemic acid derivatives provided a mixture of enantiomers and meso compounds. In order to control the position of the attachment points – and hence the final location of the attached peptides – the ACE reaction required chiral starting materials. Accordingly, all peptidoframeworks were derived from the chiral (2S)-(-)-bicycloheptene carboxylic acid. The ACE reaction of this (S)-norbornene with the (S)-epoxide provided a peptide framework in which the attached amino acids were positioned pseudo-axially. Deprotection of the amino acid allowed peptide chain building in the pseudo-axial direction. Using this strategy a framework with an alanine residue and a triglycine peptide was synthesised. By combining this strategy with the ter-butyl ester variant a framework with pseudo-axial alanine and pseudo-equatorial glycine residues was manufactured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enantiomers of Tris(2,2'-bipyridyl)ruthenium(II) were selectively resolved and utilised in chiral kinetic studies. Instrumentation was designed and built for the collection of kinetic data from their chemiluminescence reactions. After testing the kinetic profiles of various enantiomerically pure analyte reagent combinations, results proved to be inconclusive and further testing is still required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross-strand pair correlations are calculated for residue pairs in antiparallel β-sheet for two cases: pairs whose backbone atoms are hydrogen bonded together (H-bonded site) and pairs which are not (non-H-bonded site). The statistics show that this distinction is important. When glycine is located on the edge of a sheet, it shows a 3:1 preference for the H-bonded site. Thestrongest observed correlations are for pairs of disulfide-bonded cystines, many of which adopt a close-packed conformation with each cystine in a spiral conformation of opposite chirality to its partner. It is likely that these pairs are a signature for the family of small, cystine-rich proteins. Most other strong positive and negative correlations involve charged and polar residues. It appears that electrostatic compatibility is the strongest factor affecting pair correlation. Significant correlations are observed for β- and γ-branched residues inthe non-H-bonded site. An examination of the structures showsa directionality in side chain packing. There is a correlation between (1) the directionality in the packing interactions of non-H-bonded β- and γ-branched residue pairs, (2) the handedness of the observed enantiomers of chiral β-branched side chains, and (3) the handedness of the twist of β-sheet. These findings have implications for the formation of β-sheets during protein folding and the mechanism by which the sheet becomes twisted