2 resultados para Emission treatment

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel combined theoretical and computational model is developed to simulate the heat and mass transfer between a fluidised bed and a workpiece surface, and within the workpiece by considering the fluidised bed as a medium consisting of a double-particle layer and an even porous layer. The heat and mass-transfer flux from the fluidised bed to the workpiece surface is contributed by dense and bubble phases, respectively. The convective heat and mass transfer is simulated by analysing the gas dynamics in the fluidised bed, while radiative heat transfer is modelled by simulating photon emission in a three-dimensional particle array. The simulation shows that convection is approximately constant, while radiation contributes significantly to the heat transfer. The heat-transfer coefficient on an immersed surface near particles is about 6–10 times that on other areas. The transient heat and mass-transfer coefficient, heat and mass-transfer flux on any surface of the workpiece, transient temperature and carbon distributions at any position of the workpiece during the metal carburising process are studied with the simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT) is a mechanical peening process used to generate ultrafine grain surfaces on a metal. SMAT was carried out on pure magnesium using different attrition media (zirconia [ZiO2], alumina [Al2O3], and steel balls) to observe the effect on microstructure, surface residual stress, surface composition, and corrosion. Surface contamination from SMAT was characterized using glow discharge optical emission spectroscopy (GDOES). The SMAT process produced a refined grain structure on the surface of Mg but resulted in a region of elemental contamination extending ~10 μm into the substrate, regardless of the media used. Consequently, SMAT-treated surfaces showed an increased corrosion rate compared to untreated Mg, primarily through increased cathodic kinetics. This study highlights the issue of contamination resulting from the SMAT process, which is a penalty that accompanies the significant grain refinement of the surface produced by SMAT. This must be considered if attempting to exploit grain refinement for improving corrosion resistance.