5 resultados para Elgin marbles.

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic liquid marbles exhibit a remarkable ability to be opened and closed reversibly under the action of a magnetic field. Liquid can be either extracted from or added to the opened liquid marble simply with a capillary needle. Two opened liquid marbles can also be coalesced into a larger one. The magnetic liquid marbles can be maneuvered two- and three-dimensionally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic liquid marbles, an encapsulation of liquid droplet with hydrophobic magnetic particles, show remarkable responsiveness to external magnetic force and great potential to be used as a discrete droplet microfluidic system. In this study, we presented the manipulation of a magnetic liquid marble under an external magnetic field and calculated the maximum frictional force, the magnetic force required for actuating the liquid marbles and the effective surface tension of the magnetic liquid marble, as well as the threshold volume for the transition from quasi-spherical to puddle-like shape. By taking advantage of the unique feature of being opened and closed reversibly, we have proven the encapsulated droplets can be detected optically with a reflection-mode probe. Combining the open-close and optical detection also enables to probe chemical reactions taking place within liquid marbles. These remarkable features offer a simple yet powerful alternative to conventional discrete microfluidic systems and may have wide applications in biomedical and drug discovery. © 2012 The Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid marbles exhibit great potential for use as miniature labs for small-scale laboratory operations, such as experiment and measurement. While important progress has been made recently in exploring their applications as microreactions, “on-line“ measurement of the components inside the liquid still remains a challenge. Herein, it is demonstrated that “on-line“ detection can be realized on magnetic liquid marbles by taking advantage of their unique magnetic opening feature. By partially opening the particle shell, electrochemical measurement is carried out with a miniaturized three-electrode probe and the application of this technique for quantitative measurement of dopamine is demonstrated. Fully opened magnetic liquid marble makes it feasible to detect the optical absorbance of the liquid in a transmission mode. With this optical method, a glucose assay is demonstrated. Moreover, when magnetic particle shell contains low melting point material, e.g., wax, the liquid marble shows a unique encapsulation ability to form a rigid shell after heating, which facilitates the storage of the non-volatile ingredients. These unique features, together with the versatile use as microreactors, enable magnetic liquid marbles to function as a miniature lab (or called “lab in a droplet“), which may find applications in clinical diagnostics, biotechnology, chemical synthesis, and analytical chemistry.