7 resultados para Electrochemical deposition

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe for the first time the electrochemical co-deposition of composites based on a reactive base metal and graphene directly from a one-pot aqueous mixture containing graphene oxide and Zn2+. In order to overcome stability issues the Zn2+ concentration was kept below a critical threshold concentration, ensuring stable graphene oxide suspensions in the presence of cationic base metal precursors. This approach ensures the compatibility between the cationic base metal precursor and graphene oxide, which is more challenging compared to previously reported anionic noble metal complexes. Spectroscopic evidence suggests that the reason for destabilisation is zinc complexation involving the carboxylate groups of graphene oxide. The composition of the electrodeposited co-composites can be tuned by adjusting the concentration of the precursors in the starting mixture. The nano-composites show zinc particles (<3 nm) being uniformly dispersed amongst the graphene sheets. It is also demonstrated that the composites are electrochemically active and suitable for energy storage and energy conversion applications. However, a factor limiting the discharge efficiency is the reactivity of the base metal (low reduction potential and small particle size) which undergoes rapid oxidation when exposed to aqueous electrolytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

All rights reserved. A graphene nanodots-encaged porous gold electrode via ion beam sputtering deposition (IBSD) for electrochemical sensing is presented. The electrodes were fabricated using Au target, and a composite target of Al and graphene, which were simultaneously sputtered onto glass substrates by Ar ion beam, followed with hydrochloric acid corrosion. The as-prepared graphene nanodots-encaged porous gold electrodes were then used for the analysis of heavy metal ions, e.g. Cu2+ and Pb2+ by Osteryoung square wave voltammetry (OSWV). These porous electrodes exhibited enhanced detection range for the heavy metal ions due to the entrapped graphene nanodots in 3-D porous structure. In addition, it was also found that when the thickness of porous electrode reached 40 nm the detection sensitivity came into saturation. The linear detection range is 0.009-4 μM for Cu2+ and 0.006-2.5 μM for Pb2+. Good reusability and repeatability were also observed. The formation mechanism and 3-D structure of the porous electrode were also investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectra (XPS). This graphene entrapped 3-D porous structure may envision promising applications in sensing devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of materials with otherwise desirable mechanical properties is often problematic in practice as a result of corrosion. Susceptibility may arise for a number of reasons, including an electrochemically heterogeneous surface or destabilisation of a passive film. These shortcomings have historically been overcome through the use of various coatings or claddings. However, a more robust surface layer with enhanced corrosion resistance could possibly be produced via local surface alloying using a fluidised bed. A fluidised bed treatment allows a surface to be alloyed, producing a distinct surface layer up to tens of microns thick. Surface alloying additions can be selected on the basis of whether they are known or suspected to enhance the corrosion resistance of a particular material, whilst at a minimum, surface alloying likely provides a more electrochemically homogeneous surface. Electrochemical evaluations using potentiodynamic polarisations in NaCl electrolytes have shown chromised plain carbon and stainless steel surfaces have decreased rates of corrosion, decreased passive current densities, and ennobled pitting potentials relative to untreated specimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three types of methylcyclohexane (MCH) coating were deposited as interlayer dielectrics on copper using plasma-enhanced chemical vapor deposition (PECVD) at three different RF plasma power levels. The coating performance was then evaluated by an electrochemical im pedance spectroscopy (EIS) and a potentiodynamic polarization test in 3.5 wt.% NaCl solution. An atomic force microscopy (AFM) and Fourier transform infrared reflection (FT-IR) spectroscopy were also conducted to analyze the coatings. The MCH coatings showed a lower corrosion rate than the copper substrate in the potentiodynamic tests. The EIS results showed that the corrosion resistance of the coatings increased with an increasing plasma power. Thus, the MCH films with an increasing plasma power improved the corrosion resistance due to the formation of a low-porosity coating, the enhanced formation of C−H, C−C, and C≡C stretching configurations, and the improved smooth surfaces.