74 resultados para Effect of temperature

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaerobic fermentation experiments were conducted on banana (pseudo) stem residue to study the relationship between fermentation temperature and gas production yield and gas production rate, and methane content. Based on fixed dry matter concentration, inoculum concentration and fermentation time, different temperatures, i.e. 25, 30, 35, 40°C were selected and formed four experimental groups. Four levels of single factor tests were conducted to optimize temperature parameter for anaerobic fermentation of banana stem residue. The results showed that the daily gas yield of banana stem residue reached the maximum value of 36.8L on the fourth day at 35°C, and the average gas yield was 5.03L/d. The total gas yield was 402.3L, while the maximum methane content was 61.2% in the whole fermentation process. The results indicated that the comprehensive effect was best at 35°C in anaerobic fermentation of banana stem residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the role of deformation temperature on the active deformation mechanisms in a 0.6C-18Mn-1.5Al (wt%) TWIP steel. The tensile testing was performed at different temperatures, ranging from ambient to 400°C at a constant strain rate of 10-3 S-1. The microstructure characterization was carried out using a scanning electron microscopy. The deformation temperature revealed a significant effect on the active deformation mechanisms (i.e. slip versus twinning), resulting in different microstructure evolution and mechanical properties. At the room temperature, the mechanical twinning was the dominant deformation mechanism, enhancing both the strength and ductility. Dynamic strain aging (DSA) effect was observed at different deformation temperatures, though it was more pronounced at higher temperatures. The volume fraction of deformation twins significantly reduced with an increase in the deformation temperature, deteriorating the mechanical behavior. There was a transition temperature (~300°C), above which the mechanical twinning was hardly observed in the microstructure even at fracture, resulting in low ductility and strength. The current observation can be explained through the change in the stacking fault energy with the deformation temperature. © (2014) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on volume reduction of pre-treatment sludge as well as on dilution of reverse osmosis (RO) concentrate through emerging forward osmosis (FO) technology where RO concentrate draws water from the pre-treatment sludge (feed solution) in order to reduce pre-treatment sludge volume and increase the RO water recovery. Experiments were carried out using two different types of sludge i.e. (1) synthetic pre-treatment sludge (Lab sludge) which has lower salinity and (2) actual sludge from Perth Seawater Desalination Plant, Australia (Perth Seawater Desalination Plant (PSDP) sludge) which has higher salinity. Effect of membrane orientation (FO and pressure-retarded osmosis (PRO) modes) and temperature of pre-treatment sludge on permeate water flux was investigated. There was a significant increase in water flux from 3.2 to 10.2 LMH (i.e. ~3 times higher) when temperature increased from 20 to 40°C for Lab sludge in PRO mode. However, there is no significant effect of temperature on water flux in FO mode for Lab sludge. On the contrary for PSPD sludge, there was no effect on water flux with increase in temperature at PRO mode. Dissolved ions in the porous side increased the severity of concentrative internal concentration polarization; hence, it could reduce the flux. There was no significant change in water flux when temperature increased from 20 to 40°C for PSDP sludge in FO mode. However, higher amount of water has permeated from Lab sludge compared to PSDP sludge in FO mode. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stevioside, a glycoside present in the leaves of Stevia rebaudiana Bertoni, offers therapeutic benefits such as anti-hyperglycemic, anti-hypertensive, antiinflammatory, anti-tumor, diuretic and immune influencing properties. In this work antimicrobial activity of stevioside against Bacillus cereus, a major source of milk contamination was investigated. The isolate was confirmed by various biochemical and 16S rRNA gene sequencing. The effect of temperature, incubation time and concentration of stevioside was optimized from a central composite response surface design. The standard plate count (SPC) of pasteurized milk was drastically reduced in comparison to toned and fresh milk. The optimal temperature, incubation time and stevioside concentration were observed to be 60.23°C, 21 h, and 275 μg/ mL respectively. The synergism of stevioside with the external factors (temperature and time) against B. cereus was observed. Our studies showed that addition of stevioside in fresh as well as pasteurised milk would control growth of B. cereus in milk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of Fe–Mn–Si-based shape memory alloys has been investigated to examine the interplay of composition, stacking fault probability (SFP) and Neél temperature on the shape memory effect (SME). It has been found that the SFP (inversely proportional to stacking fault energy) showed little correlation to the SME for the range of alloy compositions examined. Further, the Neél temperature was not found to exhibit a significant effect on the SME. The addition of interstitial elements, however, was found to markedly decrease the SME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat generated by the specific dynamic action (SDA) associated with feeding is known to substitute for the thermoregulatory costs of cold-exposed endotherms; however, the effectiveness of this depends on food  temperature. When food is cooler than core body temperature, it is warmed by body heat and, consequently, imposes a thermoregulatory challenge to the animal. The degree to which this cost might be `paid' by SDA depends on the relative timing of food heating and the SDA response. We investigated this phenomenon in two genera of endotherms, Diomedea and Thalassarche albatrosses, by measuring postprandial metabolic rate following ingestion of food at body temperature (40°C) and cooler (0 and 20°C). This permitted us to estimate potential contributions to food warming by SDA-derived heat, and to observe the effect of cold food on metabolic rate. For meal sizes that were ~20% of body mass, SDA was 4.22±0.37% of assimilated food energy, and potentially contributed 17.9±1.0% and 13.2±2.2% of the required heating energy of food at 0°C for Diomedea and Thalassarche albatrosses, respectively, and proportionately greater quantities at higher food temperatures. Cold food increased the rate at which postprandial metabolic rate increased to 3.2–4.5 times that associated with food ingested at body temperature. We also found that albatrosses generated heat in excess by more than 50% of the estimated thermostatic heating demand of cold food, a probable consequence of time delays in physiological responses to afferent signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorophyll a and other photosynthetic pigments are used as indicators of phytoplankton biomass, composition and physiological state. Extraction and HPLC procedures were developed to analyse for chlorophyll and carotenoid pigments. The effect of the environment on pigment production must be quantified before the pigments can be used to accurately estimate biomass or quantitatively describe phytoplankton composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the behaviour of mild steel in synthetic Bayer liquor at 25 °C and 95 °C showed that turbulent conditions had a small effect on the anodic currents at 25 °C, but caused large increases in currents at 95 °C. This may be due to the increased solubility of magnetite at the higher temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wool ComfortMeter provides an objective measurement of the fabric-evoked prickle discomfort rating provided by wearers. This work aimed to quantify the sensitivity of the Wool ComfortMeter over a range of different temperature and humidity conditions to determine the recommended test conditions for its operation. The design was: three temperatures (notionally 20, 25 and 30°C) at three relative humidities (RHs, notionally 50, 65 and 80%) each with two replicates, using six different wool single jersey knits (mean fibre diameter 19.5–27.0 µm). As it was difficult to achieve exactly some of the extreme combinations of temperature and RH, some combinations were repeated, providing a total of 23 different assessment conditions. Data were analysed using restricted maximum likelihood mixed model analysis. The best fixed model included RH, RH2, temperature and the interaction of temperature and RH, accounting for 95% of the variation in Wool ComfortMeter readings. Wool ComfortMeter values were almost constant at 55–60% RH. Generally, the Wool ComfortMeter value reduced with increasing RH > 60% at temperatures of 25°C and 28.5°C as the regain of the fabric increased. However, at 20°C little change was detected as RH was increased from 50 to 80% as there were only small changes in fabric regain. The observed effects were in a good agreement with existing knowledge on the effect of regain on the mechanical properties of wool fibre. Wool ComfortMeter is best operated under standard conditions for textile testing of 65% RH and 20°C.