4 resultados para Ecological Genetics

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphism describes two or more distinct, genetically determined, phenotypes that co-occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historically, collecting nearshore habitat information has been problematic. Existing methods, such as aerial and satellite image interpretation are limited due to the attenuation of light in the water column obscuring the seabed structure. The advent of airborne bathymetric LiDAR (Light Detection and Ranging) systems (laser scanning of the seabed) now provides high-resolution seabed ‘images’ in areas that were previously difficult to survey. LiDAR imagery is available for the entire coastline of Victoria, Australia to depths of around 25 m, after being initially collected for climate change modelling by the Future Coasts Program (http://www.climatechange.vic.gov.au/adapting-to-climate-change/future-coasts). This dataset has provided the opportunity to test its applicability to inform fisheries management. Detailed geophysical information combined with spatially explicit AbTrack GPS located fisheries records and targeted genetic sampling is used in this study to provide a better understanding of the extent of available fishing grounds, direction of fishing effort and stock population structure within the Victorian western zone abalone fishery.
The species distribution modelling technique MaxEnt was used to produce a potential habitat suitability map for abalone in an attempt to capture the effective footprint of the  fishery. Also, by interrogating the spatially defined effort localities, we demonstrate an approach that may be used to identify areas where fishing effort is concentrated, and how this parameter changes temporally.
Despite barriers to adult dispersal (soft sediment barriers between reef patches), the genetic study indicates that larval movement is able to homogenize the gene pool over  large geographic distances. The western, central and eastern zone abalone stocks in Victoria were found to be a single large panmictic unit. This indicates high levels of stock connectivity and no obvious impacts of Abalone Viral Ganglioneuritis (AVG) on the genetic health of western zone stocks. We used detailed seafloor structure information interpreted from LiDAR to inform a replicated hierarchical fine scale genetic sampling design. We demonstrated that there may be extensive migration among abalone stocks across the Victorian abalone fishery.
This is contrary to previous studies that suggest recruitment is highly localised. In combination, these findings provide a valuable insight into the biology of H. rubra and immediate benefits for fisheries management. We discuss these results in the context of predicting resilience and adaptive potential of H. rubra stocks to environmental pressures and the spread of heritable diseases.
Adoption pathways are also provided to benefit future stock augmentation activities to catalyse the recovery of AVG affected reef codes. As larval dispersal is likely to be spatially and temporally variable, some AVG affected stocks are likely to recover through natural recruitment, while others will benefit from augmentation activities to ‘kick-start’ stock recovery. Evidence of neutral genetic homogeneity across Victorian reef codes suggests that the relocation of animals is unlikely to have significant genetic risks; however the potential for locally adaptive genetic differences may exist, and should be taken into consideration in future stock augmentation planning.
When combined, the spatial and genetic analyses provide valuable insights into stock productivity within the western zone fishery. Reefs appear to be expansive and support much available habitat, and the movement of larvae among reef structures is likely to be extensive in this region. Consequently, we propose that colonisation success and productivity is likely to be driven by ecological factors such as resources and/or competition, or physical factors such as wave exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat fragmentation is a major threat to biodiversity, as it can alter ecological processes at various spatial and trophic scales. At the species level, fragmentation leading to the isolation of populations can trigger reductions in genetic diversity, potentially having detrimental effects on population fitness, adaptability and ultimately population persistence. Leptomyrmex pallens is a widespread rainforest ant endemic to New Caledonia but now confined to habitat patches that have been fragmented by anthropogenic fire regimes over the last 200 years. We investigated the social structure of L. pallens in the Aoupinié region (c.a. 4900 ha), and assessed the impacts of habitat fragmentation on its population genetic structure. Allele frequencies at 13 polymorphic microsatellite loci were compared among 411 worker ants from 21 nests distributed across the region. High within-nest relatedness (r = 0.70 ± 0.02), and a single queen found in 38 % of the nests by pedigree analysis indicate that the species is monogynous to weakly polygynous. Estimates of gene flow and genetic structure across the region were subsequently determined using a combined dataset of single workers per nest and of unrelated foraging workers. These estimates coupled with a comprehensive landscape genetic analysis revealed no evidence of significant population structure or habitat effects, suggesting that the Aoupinié region harbours a single panmictic population. In contrast, analyses of mitochondrial DNA sequence data revealed a high degree of genetic structuring, indicating limited maternal gene flow and suggesting that gene flow among nests is driven primarily by winged males. Overall these findings suggest that fire-induced habitat fragmentation has had little impact on the population dynamics of L. pallens. Additional studies of less mobile species should therefore be conducted to gain further insights into fire related disturbances on the unique biodiversity and function of New Caledonian ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental disturbance underpins the dynamics and diversity of many of the ecosystems of the world, yet its influence on the patterns and distribution of genetic diversity is poorly appreciated. We argue here that disturbance history may be the major driver that shapes patterns of genetic diversity in many natural populations. We outline how disturbance influences genetic diversity through changes in both selective processes and demographically driven, selectively neutral processes. Our review highlights the opportunities and challenges presented by genetic approaches, such as landscape genomics, for better understanding and predicting the demographic and evolutionary responses of natural populations to disturbance. Developing this understanding is now critical because disturbance regimes are changing rapidly in a human-modified world.