7 resultados para EXTINCTION PATTERNS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial and temporal variations in biological diversity are critical in understanding the role of biogeographical regulation (if any) on mass extinctions. An analysis based on a latest database of the stratigraphic ranges of 89 Permian brachiopod families, 422 genera, and 2059 species within the Boreal, Paleoequatorial, and Gondwanan Realms in the Asian–western Pacific region suggests two discrete mass extinctions, each possibly with different causes. Using species/family rarefaction analysis, we constructed diversity curves for late Artinskian–Kungurian, Roadian–Wordian, Capitanian, and Wuchiapingian intervals for filtering out uneven sampling intensities. The end-Changhsingian (latest Permian) extinction eliminated 87–90% of genera and 94–96% of species of Brachiopoda. The timing of the end-Changhsingian extinction of brachiopods in the carbonate settings of South China and southern Tibet indicates that brachiopods suffered a rapid extinction within a short interval just below the Permian/Triassic boundary.

In comparison, the end-Guadalupian/late Guadalupian extinction is less profound and varies temporally in different realms. Brachiopods in the western Pacific sector of the Boreal Realm nearly disappeared by the end-Guadalupian but experienced a relatively long-term press extinction spanning the entire Guadalupian in the Gondwanan Realm. The end-Guadalupian brachiopod diversity fall is not well reflected at the timescale used here in the Paleoequatorial Realm because the life-depleted early Wuchiapingian was overlapped by a rapid radiation phase in the late Wuchiapingian. The Guadalupian fall appears to be related to the dramatic reduction of habitat area for the brachiopods, which itself is associated with the withdrawal of seawater from continental Pangea and the closure of the Sino-Mongolian seaway by the and-Guadalupian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.Habitat loss and associated fragmentation are major drivers of biodiversity decline, and understanding how they affect population processes (e.g. dispersal) is an important conservation goal. In a large-scale test employing 10 × 10 km units of replication, three species of Australian birds, the fuscous honeyeater, yellow-tufted honeyeater and white-plumed honeyeater, responded differently to fragmentation. The fuscous and yellow-tufted honeyeaters are ‘decliners’ that disappeared from suitable habitat in landscapes where levels of tree-cover fell below critical thresholds of 17 and 8%, respectively. The white-plumed honeyeater is a ‘tolerant’ species whose likelihood of occurrence in suitable habitat was independent of landscape-level tree-cover. 2.To determine whether the absence of the two decliner species in low tree-cover landscapes can be explained by reduced genetic connectivity, we looked for signatures of reduced mobility and gene flow in response to fragmentation across agricultural landscapes in the Box-Ironbark region of north-central Victoria, Australia. 3.We compared patterns of genetic diversity and population structure at the regional scale and across twelve 100 km2 landscapes with different tree-cover extents. We used genetic data to test landscape models predicting reduced dispersal through the agricultural matrix. We tested for evidence of sex-biased dispersal and sex-specific responses to fragmentation. 4.Reduced connectivity may have contributed to the disappearance of the yellow-tufted honey-eater from low tree-cover landscapes, as evidenced by male bias and increased relatedness among males in low tree-cover landscapes and signals of reduced gene flow and mobility through the agricultural matrix. We found no evidence for negative effects of fragmentation on gene flow in the other decliner, the fuscous honeyeater, suggesting that undetected pressures act on this species. As expected, there was no evidence for decreased movement through fragmented landscapes for the tolerant white-plumed honeyeater. 5.We demonstrated effects of habitat loss and fragmentation (stronger patterns of genetic differentiation, increased relatedness among males) on the yellow-tufted honeyeater above the threshold at which probability of occurrence dropped. Increasing extent and structural connectivity of habitat should be an appropriate management action for this species and other relatively sedentary woodland specialist species for which it can be taken as representative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Permian-Triassic extinction pattern in the peri-Gondwanan region is documented biostratigraphically, geochemically and sedimentologically based on three marine sequences deposited in southern Tibet and comparisons with the sections in the Salt Range, Pakistan and Kashmir. Results of biostratigraphical ranges for the marine faunas reveal an end-Permian event comparable in timing with that known at the Meishan section in low palaeolatitude as well as Spitsbergen and East Greenland in northern Boreal settings although biotic patterns earlier in the Permian vary. The previously interpreted delayed extinction (Late Griesbachian) at the Selong Xishan section is not supported by our analysis. The end-Permian event exhibits an abrupt marine faunal shift slightly beneath the Permian-Triassic boundary (PTB) from benthic taxa- to nektic taxa-dominated communities. The climate along the continental margin of Neo-Tethys was cold before the extinction event. However, a rapid climatic warming event as indicated by the southward invasion of abundant warm-water conodonts, warm-water brachiopods, calcareous sponges, and gastropods was associated with the extinction event. Stable isotopic values of δ13Ccarb, δ13Corg and δ18O show a sharp negative drop slightly before and during the extinction interval. Sedimentological and microstratigraphical analysis reveals a Late Permian regression, as marked by a Caliche Bed at the Selong Xishan section and the micaceous siltstone in the topmost part of the Qubuerga Formation at the Qubu and Tulong sections. The regression was immediately followed by a rapid transgression beneath the PTB. The basal Triassic rocks fine upward, and are dominated by dolomitic packstone/wackestone containing pyritic cubes, bioturbation and numerous tiny foraminifers, suggesting that the studied sections were deposited during the initial stage of the transgression and hence may not have been deeply affected by the anoxic event that is widely believed to characterise the zenith of the transgression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 B.V. Body size is a fundamental and defining character of an organism, and its variation in space and time is generally considered to be a function of its biology and interactions with its living environment. A great deal of body size related ecological and evolutionary research has been undertaken, mostly in relation to extant animals. Among the many body size-related hypotheses proposed and tested, the size-bathymetry relationship is probably the least studied. In this study, we compiled a global body size dataset of Changhsingian (Late Permian, ca. 254. Ma-252. Ma) brachiopod species from low-latitude areas (30°S-30°N) and analyzed their species diversity and body size distribution patterns in relation to the nearshore-offshore-basin bathymetric gradient. The dataset contained 1768 brachiopod specimens in 435 species referred to 159 genera and 9 orders, from 135 occurrences (localities) of 18 different palaeogeographic regions. Treating the whole of the Changhsingian Stage as a single time slice, we divided the nearshore-offshore-basin bathymetric gradient into three broad depth-related environments: nearshore, offshore and basinal environments, and compared how the species diversity and body size varied along this large-scale bathymetric gradient.Here, we report an array of complex patterns. First, we found a clear overall inverse correlation between species diversity and water depth along the nearshore-offshore-basin gradient, with most species concentrating in the nearshore environment. Second, when the median sizes of all low-latitude brachiopod species from the three environments were compared, we found that there was no significant size difference between the nearshore and offshore environments, suggesting that neither the wave base nor the hydrostatic pressure exerts a critical influence on the body size of brachiopods. On the other hand, the median sizes of brachiopods from the nearshore environment and, to a lesser extent, the offshore environment were found to be significantly larger than that of basinal brachiopods. This trend of significant size reduction in basinal brachiopods mirrors the relative low species diversity in the basinal environment, and neither can be easily explained by the tendency of decreasing food availability towards deeper sea environments. Rather, both trends are consistent with the hypothesis of an expanding Oxygen Minimum Zone (OMZ) in the bathyal (slope to deepsea) environments, where hypoxic to anoxic conditions are considered to have severely restricted the diversification of benthos and favored the relative proliferation of small-sized brachiopods. Finally, a significant difference was also found between eurybathic and stenobathic species in their body size response to the nearshore-offshore-basin gradient, in that eurybathic species (species found in all three environments) did not tend to change their body size significantly according to depth, whereas stenobathic forms (species restricted to a single environment) exhibit a decline in body size towards the basinal environment. This pattern is interpreted to suggest that bathymetrically more tolerant species are less sensitive to depth control with respect to their body size change dynamics, in contrast to stenobathic species which tend to grow larger in shallower water depths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New analysis of Permian-Triassic brachiopod assemblages and body-size changes in South China provides insights into the process of the environmental crisis in the lead up to the end-Permian mass extinction. The recently discovered Daoduishan section of South China can be considered as an important auxiliary section for the study of brachiopods at the Meishan Section D of South China, the GSSP of the Permian-Triassic Boundary (PTB). This paper studied changes of the brachiopod assemblages and body sizes through the upper part of the Changxing Formation and basal Yinkeng Formation of Daoduishan. The results show that significant changes of brachiopod assemblages took place between Beds 24e and 26. Brachiopods?Prelissorhynchia sp. and Paracruirithyris pygmaea are the dominators in Beds 14-24e, while Tethyochonetes pigmaea and Paryphella spp. are the dominators in Beds 26-29. Body sizes of brachiopods significantly decreased between Beds 24e and 26 and then maintained smaller means in Beds 27-29. Studies of brachiopod morphological features indicate both Tethyochonetes and Paryphella had advantageous adaptations enabling them to copy with living in an anoxic/dysoxic and/or low-productivity environment during the Permian-Triassic crisis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper has undertaken a quantitative and statistical analysis of brachiopod body-size changes through the marine Permian–Triassic boundary section at Zhongzhai, Guizhou Province, South China, and found that (1) pre-mass extinction dwarfing is evident for at least the rugosochonetid species chosen for this study; (2) Tethyochonetes species reduced their size earlier than that in the Neochonetes species; and (3) no significant size reduction occurred in the newly evolved species of these two genera. Inter-species competition for resources between Neochonetes species and Tethyochonetes species and the reduction of food supply in the upper part of the uppermost Permian is here proposed to explain these observed stratigraphic patterns of brachiopod body-size changes throughout the Zhongzhai section. In the case of the newly evolved species showing no significant body-size change, morphological innovations (adaptations) in the process of speciation are considered to have significantly enhanced these newly evolved species' flexibility and survival in coping with degrading environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global palaeobiogeographic distributions of two resembling genera, Neochonetes and Fusichonetes (Brachiopoda), from the Carboniferous to Griesbachian are analysed. This analysis provides insight into the biotic response of two related genera to changing palaeoclimate, regional tectonics, and environmental crises. Neochonetes originated in the equatorial area in the Mississippian, and it mostly retained this position during the peak of the glaciation in the Carboniferous–Permian ice age (namely in the Pennsylvanian). Neochonetes then dispersed globally during the Cisuralian when the climate became warmer and the ice sheet started to retreat. In the Guadalupian and Lopingian, following the closure of the Ural seaway at the end of the Cisuralian and the regression at the end-Guadalupian, Neochonetes almost disappeared in the western part of Gondwana. Subsequently during the Lopingian the genus retracted to the middle- and low-latitude Palaeo-Tethys and Tethys. In comparison, Fusichonetes originated in the equatorial area in the late Guadalupian and was still present in that area in the Lopingian. Both genera occurred only in South China in the Griesbachian. It is inferred that this could be related, not only to the deteriorated palaeoenvironmental conditions (e.g., anoxia, global warming) leading up to the extinction of most of the Neochonetes and Fusichonetes species in other areas, but also to the better physiological adaptation of the smaller shells of Neochonetes and Fusichonetes species in South China.