14 resultados para EXFOLIATED GRAPHITE OXIDE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the development of a stacked electrode supercapacitor cell using stainless steel meshes as the current collectors and optimised single walled nanotubes (SWNT)-microwave exfoliated graphene oxide (mw rGO) composites as the electrode material. The introduction of mw rGO into a SWNT matrix creates an intertwined porous structure that enhances the electroactive surface area and capacitive performance due to the 3-D hierarchical structure that is formed. The composite structure was optimised by varying the weight ratio of the SWNTs and mw rGO. The best performing ratio was the 90% SWNT-10% mw rGO electrode which achieved a specific capacitance of 306 F g-1 (3 electrode measurement calculated at 20 mV s-1). The 90% SWNT-10% mw rGO was then fabricated into a stacked electrode configuration (SEC) which significantly enhanced the electrode performance per volume (1.43 mW h cm-3, & 6.25 W cm-3). Device testing showed excellent switching capability up to 10 A g-1, and very good stability over 10000 cycles at 1.0 A g-1 with 93% capacity retention. © the Partner Organisations 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 A green method for the deoxygenation of graphene oxide (GO) was developed using K2CO3 as a reusable reduction agent. The size and thickness of the reduced GO are less than 1 μm and around 0.85 nm, respectively. Carbon dioxide is the only byproduct during this process. The reduction mechanism of the graphene oxide includes two reduction steps. On the one hand, ionic oxygen generated from the electrochemical reaction between hydroxyl ions and oxygen in the presence of K2CO3 reacts with carbonyl groups attached to the GO layers at 50°C. On the other hand, ionic oxygen attacks hydroxyl and epoxide groups, which become carbonyl groups and then are converted to carbon dioxide by K2CO3 at 90°C. These oxygenous groups are finally converted to CO2 from graphene layers, leading to the formation of graphene sheets. Headspace solid-phase microextraction and gas chromatography-mass spectrometry detected the existence of n-dodecanal and 4-ethylbenzoic acid cyclopentyl ester during the reduction, suggesting that oxygen functional groups on the GO layers are not only aligned, but randomly dispersed in some areas based on the proposed mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution positron annihilation lifetime (PAL) and two-detector coincidence Doppler broadening of annihilation radiation (2D-DBAR) measurements on graphite and its oxide derivatives for defect information, differing in oxidization agents, are reported. Positron measurements were found to be very effective in the investigation of defects in graphite and its derivatives. Positrons are mainly annihilated in vacancy-like defects on the particle surface and in large open-volume holes associated with the interface of graphite and graphite oxide. Different types of defects have been detected for unexfoliated graphite oxide and exfoliated graphene oxide based on 2D-DBAR measurements, namely the vacancy cluster and vacancy-oxygen complexes. It is also interesting to observe that the calculated large open-volume diameter of graphene oxide coincides with the distance between the layers from the XRD investigation, which indicates that the annihilation of the long-lived lifetime component τ3 might take place in the area between the graphene layers; no large open-volume hole has been detected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Utilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally reduced at temperatures of 200 and 600 °C) in NR by a solution blending method. RGO exfoliation and the uniform distribution of fillers in the composites were studied by atomic force microscopy, Fourier transformation infrared spectroscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy. The solvent sensitivity of the composite samples was noted from the sudden variation in electrical conductivity which was due to the breakdown of the filler networks during swelling in different solvents. It was found that the synergy between CNTs and RGO exfoliated at 200 °C imparts maximum sensitivity to NR in recognizing the usually used aromatic laboratory solvents. Mechanical and dynamic mechanical studies reveal efficient filler reinforcement, depending strongly on the nature of filler-elastomer interactions and supports the sensing mechanism. Such interactions were quantitatively determined using the Maier and Göritz model from Payne effect experiments. It is concluded that the polarity induced by RGO addition reduces the interactions between CNTs and ultimately results in the solvent sensitivity. © 2013 The Royal Society of Chemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Herein, a new graphene/Cu nanoparticle composite was prepared via the in situ reduction of GO in the presence of Cu nanoparticles which was then utilized as a sacrificing template for the formation of flexible and porous graphene capacitor electrodes by the dissolution of the intercalated Cu nanoparticle in a mixed solution of FeCl3 and HCl. The porous RGO electrode was characterized by atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The as-prepared graphene/Cu nanoparticle composite and the pure graphene film after removal of Cu nanoparticles possessed high conductivity of 3.1 × 103 S m-1 and 436 S m-1 respectively. The porous RGO can be used as the electrode for the fabrication of supercapacitors with high gravimetric specific capacitances up to 146 F g-1, good rate capability and satisfactory electrochemical stability. This environmentally friendly and efficient approach to fabricating porous graphene nanostructures could have enormous potential applications in the field of energy storage and nanotechnology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Active sites and the catalytic mechanism of nitrogen-doped graphene in an oxygen reduction reaction (ORR) have been extensively studied but are still inconclusive, partly due to the lack of an experimental method that can detect the active sites. It is proposed in this report that the active sites on nitrogen-doped graphene can be determined via the examination of its chemical composition change before and after ORR. Synchrotron-based X-ray photoelectron spectroscopy analyses of three nitrogen-doped multilayer graphene samples reveal that oxygen reduction intermediate OH(ads), which should chemically attach to the active sites, remains on the carbon atoms neighboring pyridinic nitrogen after ORR. In addition, a high amount of the OH(ads) attachment after ORR corresponds to a high catalytic efficiency and vice versa. These pinpoint that the carbon atoms close to pyridinic nitrogen are the main active sites among the different nitrogen doping configurations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pH-sensitive, mechanically strong and thermally stable graphene/poly (acrylic acid) (graphene/PAA) hydrogel was prepared via reversible addition fragmentation transfer (RAFT) polymerizations in the presence of a cross-linking agent. The RAFT agent was covalently coupled onto graphene basal planes via an esterification reaction, with benzoic acid functionalities pre-attached on graphene with its aryl diazonium salt precursor. AFM and SEM analysis revealed the successful preparation of single layered graphene sheets and graphene/polymer hydrogels with pH controlled porous structures. Attenuated total reflection infrared (ATR-IR) and thermogravimetric analyzer (TGA) verified the successful stepwise preparation of graphene/PAA hydrogel. This graphene/PAA hydrogel was pH-sensitive and more mechanically elastic than the PAA hydrogel prepared without graphene. The pH sensitivity of the hydrogel was further utilized for controlled drug release. Doxorubicin was chosen as a model drug and loaded into the hydrogels. The drug loading and release experiment indicated that this hydrogel can be used to efficiently control drug release in the intestine environment (pH = 7.4), better than release in a more acidic environment.© 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphite and numerous graphitic-derived micro- and nano-particles have gained importance in current materials science research. These two-dimensional sheets of sp(2)-hybridized carbon atoms remarkably influence the properties of polymers. Graphene mono-layers, graphene oxides, graphite oxides, exfoliated graphite, and other related materials are derived from a parental graphite structure. In this review, we focus primarily on the role of these fillers in regulating the electrical and sensing properties of polymer composites. It has been demonstrated that the addition of an optimized mixture of graphene and or its derivatives to various polymers produces a record-high enhancement of the electrical conductivity and achieved semiconducting characteristics at small filler loading, making it suitable for sensor manufacture. Promising sensing characteristics are observed in graphite-derived composite films compared with those of micro-sized composites and the properties are explained mainly based on the filler volume fraction, nature and rate of dispersion and the filler polymer interactions at the interface. In short, this critical review aims to provide a thorough understanding of the recent advances in the area of graphitic-based polymer composites in advanced electronics. Future perspectives in this rapidly developing field are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphenepyrrole/ carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g-1, making them promising in large-scale energy-storage device applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet-spinning to produce long lengths of micrometer-dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO “inks” in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating the need for relatively concentrated spinning dope dispersions. The dilute LC GO dispersion is proven to be suitable for fiber spinning using a number of coagulation strategies, including non-solvent precipitation, dispersion destabilization, ionic cross-linking, and polyelectrolyte complexation. One-step continuous spinning of graphene fibers and yarns is introduced for the first time by in situ spinning of LC GO in basic coagulation baths (i.e., NaOH or KOH), eliminating the need for post-treatment processes. The thermal conductivity of these graphene fibers is found to be much higher than polycrystalline graphite and other types of 3D carbon based materials.