27 resultados para EQUINE ARTICULAR-CARTILAGE

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives Animal and in vitro studies suggest that parathyroid hormone (PTH) may affect articular cartilage. However, little is known of the relationship between PTH and human joints in vivo.

Design Longitudinal.

Setting Barwon Statistical Division, Victoria, Australia.

Participants 101 asymptomatic women aged 35–49 years (2007–2009) and without clinical knee osteoarthritis, selected from the population-based Geelong Osteoporosis Study.

Risk factors Blood samples obtained 10 years before (1994–1997) and stored at −80°C for random batch analyses. Serum intact PTH was quantified by chemiluminescent enzyme assay. Serum 25-hydroxyvitamin D (25(OH)D) was assayed using equilibrium radioimmunoassay. Models were adjusted for age, bone area and body mass index; further adjustment was made for 25(OH)D and calcium supplementation.

Outcome Knee cartilage volume, measured by MRI.

Results A higher lnPTH was associated with reduced medial—but not lateral—cartilage volume (regression coefficient±SD, p value: −72.2±33.6 mm3, p=0.03) after adjustment for age, body mass index and bone area. Further sinusoidal adjustment (−80.8±34.4 mm3, p=0.02) and 25(OH)D with seasonal adjustment (−72.7±35.1 mm3, p=0.04), calcium supplementation and prevalent osteophytes did not affect the results.

Conclusions A higher lnPTH might be detrimental to knee cartilage in vivo. Animal studies suggest that higher PTH concentrations reduce the healing ability of cartilage following minor injury. This may be apparent in the presence of increased loading, which occurs in the medial compartment, placing the medial cartilage at higher risk for injury.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Articular cartilage is a highly efficacious water-based tribological system that is optimized to provide low friction and wear protection at both low and high loads (pressures) and sliding velocities that must last over a lifetime. Although many different lubrication mechanisms have been proposed, it is becoming increasingly apparent that the tribological performance of cartilage cannot be attributed to a single mechanism acting alone but on the synergistic action of multiple "modes" of lubrication that are adapted to provide optimum lubrication as the normal loads, shear stresses, and rates change. Hyaluronic acid (HA) is abundant in cartilage and synovial fluid and widely thought to play a principal role in joint lubrication although this role remains unclear. HA is also known to complex readily with the glycoprotein lubricin (LUB) to form a cross-linked network that has also been shown to be critical to the wear prevention mechanism of joints. Friction experiments on porcine cartilage using the surface forces apparatus, and enzymatic digestion, reveal an "adaptive" role for an HA-LUB complex whereby, under compression, nominally free HA diffusing out of the cartilage becomes mechanically, i.e., physically, trapped at the interface by the increasingly constricted collagen pore network. The mechanically trapped HA-LUB complex now acts as an effective (chemically bound) "boundary lubricant"-reducing the friction force slightly but, more importantly, eliminating wear damage to the rubbing/shearing surfaces. This paper focuses on the contribution of HA in cartilage lubrication; however, the system as a whole requires both HA and LUB to function optimally under all conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Articular cartilage is an example of a highly efficacious water-based, natural lubrication system that is optimized to provide low friction and wear protection at both low and high loads and sliding velocities. One of the secrets of cartilage's superior tribology comes from a unique, multimodal lubrication strategy consisting of both a fluid pressurization mediated lubrication mechanism and a boundary lubrication mechanism supported by surface bound macromolecules. Using a reconstituted network of highly interconnected cellulose fibers and simple modification through the immobilization of polyelectrolytes, we have recreated many of the mechanical and chemical properties of cartilage and the cartilage lubrication system to produce a purely synthetic material system that exhibits some of the same lubrication mechanisms, time dependent friction response, and high wear resistance as natural cartilage tissue. Friction and wear studies demonstrate how the properties of the cellulose fiber network can be used to control and optimize the lubrication and wear resistance of the material surfaces and highlight what key features of cartilage should be duplicated in order to produce a cartilage-mimetic lubrication system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chondrolabral lesions are uncommon after anteroinferior glenohumeral dislocations. This report describes a new dual-lesion complex that involved an avulsion of the anteroinferior glenoid labrum and a flap tear of the adjacent articular cartilage [glenoid labral tear and articular cartilage flap (GLAF) lesion]. The chondral component involved a large undermined region of the anterior half of the lower glenoid articular cartilage, and the labral component involved an avulsion from the 2.30–6 o’clock position on the glenoid. The labral tear was reconstructed with 3 suture anchors to form a neo-labrum in an attempt to overlap and stabilize the periphery of the chondral flap. A meniscal repair device was used to place a mattress stitch in the cartilage periphery to further stabilize the flap. This technique resulted in a secure repair without any chondral damage, and this remained intact on an MRI performed at a 3-month follow-up. A final 12-month follow-up showed complete recovery, as assessed by the Oxford shoulder instability score and Rowe score, and by a return to the pre-injury sporting level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chondroitin sulfate proteoglycans (CSPGs) aggrecan, versican, and brevican are large aggregating extracellular matrix molecules that inhibit axonal growth of the mature central nervous system (CNS). ADAMTS proteoglycanases, including ADAMTS4 and ADAMTS5, degrade CSPGs, representing potential targets for ameliorating axonal growth-inhibition by CSPG accumulation after CNS injury. We investigated the proteolysis of CSPGs in mice homozygous for Adamts4 or Adamts5 null alleles after spinal cord injury (SCI). ADAMTS-derived 50-60 kDa aggrecan and 50 kDa brevican fragments were observed in Adamts4-/-, Adamts5-/-, and wt mice but not in the sham-operated group. By contrast Adamts4-/- and Adamts5-/- mice were both protected from versican proteolysis with an ADAMTS-generated 70 kDa versican fragment predominately observed in WT mice. ADAMTS1, ADAMTS9, and ADAMTS15 were detected by Western blot in Adamts4-/- mice' spinal cords after SCI. Immunohistochemistry showed astrocyte accumulation at the injury site. These data indicate that aggrecan and brevican proteolysis is compensated in Adamts4-/- or Adamts5-/- mice by ADAMTS proteoglycanase family members but a threshold of versican proteolysis is sensitive to the loss of a single ADAMTS proteoglycanase during SCI. We show robust ADAMTS activity after SCI and exemplify the requirement for collective proteolysis for effective CSPG clearance during SCI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arthritis is a multifactorial disease for which current therapeutic intervention with high efficacy remains challenging. Arthritis predominately affects articular joints, and cartilage deterioration and inflammation are key characteristics. Current therapeutics targeting inflammatory responses often cause severe side effects in patients because of the systemic inhibition of cytokines or other global immunosuppressive activities. Furthermore, a lack of primary response or failure to sustain a response to treatment through acquired drug resistance is an ongoing concern. Nevertheless, treatments such as disease-modifying anti-rheumatic drugs, biological agents, and corticosteroids have revealed promising outcomes by decreasing pain and inflammation in patients and in some cases reducing radiographic progression of the disease. Emerging and anecdotal therapeutics with anti-inflammatory activity, alongside specific inhibitors of the A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 repeats (ADAMTS) cartilage-degrading aggrecanases, provide promising additions to current arthritis treatment strategies. Thus, it is paramount that treatment strategies be optimized to increase efficacy, reduce debilitating side effects, and improve the quality of life of patients with arthritis. Here, we review the current strategies that attempt to slow or halt the progression of osteoarthritis and rheumatoid arthritis, providing an up-to-date summary of pharmaceutical treatment strategies and side effects. Importantly, we highlight their potential to indirectly regulate ADAMTS aggrecanase activity through their targeting of inflammatory mediators, thus providing insight into a mechanism by which they might inhibit cartilage destruction to slow or halt radiographic progression of the disease. We also contrast these with anecdotal or experimental administration of statins that could equally regulate ADAMTS aggrecanase activity and are available to arthritis sufferers worldwide. Finally, we review the current literature regarding the development of synthetic inhibitors directed toward the aggrecanases ADAMTS4 and ADAMTS5, a strategy that might directly inhibit cartilage destruction and restore joint function in both rheumatoid arthritis and osteoarthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective
The patellofemoral joint is an example of an incongruent articulation commonly affected by osteoarthritis (OA). The relationship between femoral sulcus angle and the development and progression of patellofemoral OA is unclear. The aim of this study was to examine the relationship between the femoral sulcus angle at baseline and patella cartilage volume at baseline and at 2-year follow-up among community based adults with established knee OA.

Methods
One hundred subjects had magnetic resonance imaging of their symptomatic knee at baseline and at 2-year follow-up. From these images, patella cartilage volume was determined. Radiographic skyline views of the patellofemoral joint were taken at baseline to measure the femoral sulcus angle.

Results
For every 1° increase in the femoral sulcus angle (i.e., as the sulcus angle became more shallow) there was an associated 9.1 mm3 (95% CI 3.1, 15.0) increase in medial patella cartilage volume at baseline (P = 0.003). There was a similar trend that approached statistical significance between the femoral sulcus angle and the lateral patella facet cartilage volume at baseline (P = 0.09). There was no association between the femoral sulcus angle at baseline and the change in patella cartilage volume over 2 years in either patellofemoral compartment.

Conclusion
These results infer that the femoral sulcus angle is a cross-sectional determinant of the amount of patella cartilage, but is not a major determinant of the annual change of patella cartilage volume among people with knee OA. These data suggest that a shallower sulcus in the context of established OA may be an advantageous anatomical variant. Further longitudinal studies are required to determine the role of the femoral sulcus angle in OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provided initial evidence that extract derived from the cartilage of two commercially available Australian shark species, may potentially, be effective in the inhibition of tumour growth, whilst also showing that the species and maturity level, but not the gender of the shark, influenced the amount of extract obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High molecular weight hyaluronic acid (HA) is present in articular joints and synovial fluid at high concentrations; yet despite numerous studies, the role of HA in joint lubrication is still not clear. Free HA in solution does not appear to be a good lubricant, being negatively charged and therefore repelled from most biological, including cartilage, surfaces. Recent enzymatic experiments suggested that mechanically or physically (rather than chemically) trapped HA could function as an “adaptive” or “emergency” boundary lubricant to eliminate wear damage in shearing cartilage surfaces. In this work, HA was chemically grafted to a layer of self-assembled amino-propyl-triethoxy-silane (APTES) on mica and then cross-linked. The boundary lubrication behavior of APTES and of chemically grafted and cross-linked HA in both electrolyte and lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) solutions was tested with a surface forces apparatus (SFA). Despite the high coefficient of friction (COF) of μ ≈ 0.50, the chemically grafted HA gel significantly improved the lubrication behavior of HA, particularly the wear resistance, in comparison to free HA. Adding more DOPC lipid to the solution did not improve the lubrication of the chemically grafted and cross-linked HA layer. Damage of the underlying mica surface became visible at higher loads (pressure >2 MPa) after prolonged sliding times. It has generally been assumed that damage caused by or during sliding, also known as “abrasive friction”, which is the main biomedical/clinical/morphological manifestation of arthritis, is due to a high friction force and, therefore, a large COF, and that to prevent surface damage or wear (abrasion) one should therefore aim to reduce the COF, which has been the traditional focus of basic research in biolubrication, particularly in cartilage and joint lubrication. Here we combine our results with previous ones on grafted and cross-linked HA on lipid bilayers, and lubricin-mediated lubrication, and conclude that for cartilage surfaces, a high COF can be associated with good wear protection, while a low COF can have poor wear resistance. Both of these properties depend on how the lubricating molecules are attached to and organized at the surfaces, as well as the structure and mechanical, viscoelastic, elastic, and physical properties of the surfaces, but the two phenomena are not directly or simply related. We also conclude that to provide both the low COF and good wear protection of joints under physiological conditions, some or all of the four major components of joints—HA, lubricin, lipids, and the cartilage fibrils—must act synergistically in ways (physisorbed, chemisorbed, grafted and/or cross-linked) that are still to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lubricin (LUB) is a glycoprotein of the synovial cavity of human articular joints, where it serves as an antiadhesive, boundary lubricant, and regulating factor for the cartilage surface. It has been proposed that these properties are related to the presence of a long, extended, heavily glycosylated and highly hydrated mucinous domain in the central part of the LUB molecule. In this work, we show that LUB has a contour length of 220 ± 30 nm and a persistence length of ≤10 nm. LUB molecules aggregate in oligomers where the protein extremities are linked by disulfide bonds. We have studied the effect of proteolytic digestion by chymotrypsin and removal of the disulfide bonds, both of which mainly affect the N− and C− terminals of the protein, on the adsorption, normal forces, friction (lubrication) forces, and wear of LUB layers adsorbed on smooth, negatively charged mica surfaces, where the protein naturally forms lubricating polymer brush-like layers. After in situ digestion, the surface coverage was drastically reduced, the normal forces were altered, and both the coefficient of friction and the wear were dramatically increased (the COF increased to μ = 1.1−1.9), indicating that the mucinous domain was removed from the surface. Removal of disulfide bonds did not change the surface coverage or the overall features of the normal forces; however, we find an increase in the friction coefficient from μ = 0.02−0.04 to μ = 0.13−1.17 in the pressure regime below 6 atm, which we attribute to a higher affinity of the protein terminals for the surface. The necessary condition for LUB to be a good lubricant is that the protein be adsorbed to the surface via its terminals, leaving the central mucin domain free to form a low-friction, surface-protecting layer. Our results suggest that this “end-anchoring” has to be strong enough to impart the layer a sufficient resistance to shear, but without excessively restricting the conformational freedom of the adsorbed proteins.