11 resultados para ENZYME-KINETICS

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper demonstrates how the "error-bar" feature can be used to extend the utility of "worldware" spreadsheet packages in producing high-quality graphs for university teaching and learning, and for research. To further utilize the advantages of spreadsheets in university education, this paper seeks to overcome some of the earlier reservations about the lack of scientific plotting capabilities of spreadsheet applications. Specific examples of educational material in the areas of enzyme kinetics, vibrational spectroscopy, vibronic spectroscopy, and mass spectrometry are discussed. It is argued that, where practical, university educators should use "worldware" packages to prepare teaching aids, since these would better prepare their students for future employment. The use of software features for purposes that were not envisioned by the programmers has additional educational benefits in fostering flexibility and innovation. Other graphing packages can also use the "error-bar" feature in a manner similar to that described here for Excel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some
recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual’s response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Covalent posttranslational protein modifications by eukaryotic transglutaminases proceed by a kinetic pathway of acylation and deacylation. Ammonia is released as the acylenzyme is formed, whereas the cross-linked product is released later in the deacylation step. Superposition of the active sites of transglutaminase type 2 (TG2) and the structurally related cysteine protease, papain, indicates that in the formation of tetrahedral intermediates, the backbone nitrogen of the catalytic Cys-277 and the NƐ1 nitrogen of Trp-241 of TG2 could contribute to transition-state stabilization. The importance of this Trp-241 side chain was demonstrated by examining the kinetics of dansylcadaverine incorporation into a model peptide. Although substitution of the Trp-241 side chain with Ala or Gly had only a small effect on the Michaelis constant Km (1.5-fold increase), it caused a >300-fold lowering of the catalytic rate constant kcat. The wild-type and mutant TG2-catalyzed release of ammonia showed kinetics similar to the kinetics for the formation of cross-linked product, indicating that transitionstate stabilization in the acylation step was rate-limiting. In papain, a Gln residue is at the position of TG2-Trp-241. The conservation of Trp-241 in all eukaryotic transglutaminases and the finding that W241Q-TG2 had a much lower kcat than wild-type enzyme suggest evolutionary specialization in the use of the indole group. This notion is further supported by the observation that transitionstate- stabilizing side chains of Tyr and His that operate in some serine and metalloproteases only partially substituted for Trp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiotensin IV (Ang IV) exerts profound effects on memory and learning, a phenomenon ascribed to its binding to a specific AT4 receptor. However the AT4 receptor has recently been identified as the insulin-regulated aminopeptidase (IRAP). In this study, we demonstrate that AT4 receptor ligands, including Ang IV, Nle1-Ang IV, divalinal-Ang IV, and the structurally unrelated LVV-hemorphin-7, are all potent inhibitors of IRAP catalytic activity, as assessed by cleavage of leu-β-naphthylamide by recombinant human IRAP. Both Ang IV and divalinal–Ang IV display competitive kinetics, indicating that AT4 ligands mediate their effects by binding to the catalytic site of IRAP. The AT4 ligands also displaced [125I]-Nle1-Ang IV or [125I]-divalinal1-Ang IV from IRAP-HEK293T membranes with high affinity, which was up to 200-fold greater than in the catalytic assay; this difference was not consistent among the peptides, and could not be ascribed to ligand degradation. Although some AT4 ligands were subject to minor cleavage by HEK293T membranes, none were substrates for IRAP. Of a range of peptides tested, only vasopressin, oxytocin, and met-enkephalin were rapidly cleaved by IRAP. We propose that the physiological effects of AT4 ligands result, in part, from inhibition of IRAP cleavage of neuropeptides involved in memory processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of enzyme electrodes using self-assembled monolayers (SAMs) has attracted considerable interest because of the spatial control over the enzyme immobilization. A model system of glucose oxidase covalently bound to a gold electrode modified with a SAM of 3-mercaptopropionic acid was investigated with regard to the effect of fabrication variables such as the surface topography of the underlying gold electrode, the conditions during covalent attachment of the enzyme and the buffer used. The resultant monolayer enzyme electrodes have excellent sensitivity and dynamic range which can easily be adjusted by controlling the amount of enzyme immobilized. The major drawback of such electrodes is the response which is limited by the kinetics of the enzyme rather than mass transport of substrates. Approaches to bringing such enzyme electrodes into the mass transport limiting regime by exploiting direct electron transfer between the enzyme and the electrode are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that proteases can be used to selectively trigger the self-assembly of peptide hydrogels via reversed hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early stages of the self-assembly of peptide hydrogels largely determine their final material properties. Here we discuss experimental methodologies for monitoring the self-assembly kinetics which underpin peptide hydrogel formation. The early stage assembly of an enzyme-catalysed Fmoc-trileucine based self-assembled hydrogel was examined using spectroscopic techniques (circular dichroism, CD, and solution NMR) as well as chromatographic (HPLC) and mechanical (rheology) techniques. Optimal conditions for enzyme-assisted hydrogel formation were identified and the kinetics examined. A lag time associated with the formation and accumulation of the self-assembling peptide monomer was observed and a minimum hydrogelator concentration required for gelation was identified. Subsequent formation of well defined nano-and microscale structures lead to self-supporting hydrogels at a range of substrate and enzyme concentrations. 1H NMR monitoring of the early self-assembly process revealed trends that were well in agreement with those identified using traditional methods (i.e. HPLC, CD, rheology) demonstrating 1H NMR spectroscopy can be used to non-invasively monitor the self-assembly of peptide hydrogels without damaging or perturbing the system.