6 resultados para EN 15251

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the Intergovernmental Panel on Climate Change the buildings sector has the largest mitigation potential for CO2 emissions. Especially in office buildings, where internal heat loads and a relatively high occupant density occur at the same time with solar heat gains, overheating has become a common problem. In Europe the adaptive thermal comfort model according to EN 15251 provides a method to evaluate thermal comfort in naturally ventilated buildings. However, especially in the context of the climate change and the occurrence of heat waves within the last decade, the question arises, how thermal comfort can be maintained without additional cooling, especially in warm climates. In this paper a parametric study for a typical cellular naturally ventilated office room has been conducted, using the building simulation software EnergyPlus. It is based on the Mediterranean climate of Athens, Greece. Adaptive thermal comfort is evaluated according to EN 15251. Variations refer to different building design priorities, and they consider the variability of occupant behaviour and internal heat loads by using an ideal and worst case scenario. The influence of heat waves is considered by comparing measured temperatures for an average and an exceptionally hot year within the last decade. Since the use of building controls for shading affects thermal as well as visual comfort, daylighting and view are evaluated as well. Conclusions are drawn regarding the influence and interaction of building design, occupants and heat waves on comfort and greenhouse gas emissions in naturally ventilated offices, and related optimisation potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strong heat waves in the past decade and resulting legal cases which gave full responsibility for indoor thermal comfort to building professionals lead to an increased uncertainty how to maintain thermal comfort in offices without the use of a cooling system. Adaptive thermal comfort standards such as EN 15251 and Ashrae Standard 55 provide methodologies to evaluate comfort in naturally ventilated spaces. Based on a parametric study for a typical cellular office in the context of Athens, Greece, and using the building simulation software EnergyPlus, this study investigates the potentials for the applicability of natural ventilation in a Mediterranean climate. The Ashrae Standard 55 and EN 15251 adaptive thermal comfort models are compared in this context, and conclusions are drawn how the use of natural ventilation based on adaptive models can be further encourgaged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the construction sector has the greatest potential for climate change mitigation. This work investigates the potential for climate change mitigation in naturally ventilated and mixed mode office buildings, by evaluating the range of influence of building design and occupants on greenhouse gas emissions as well as thermal and visual comfort.

Thermal comfort is evaluated according to the EN 15251 adaptive thermal comfort model, visual comfort is based on daylight autonomy and view. Parametric studies have been conducted based on building simulation for the climate of Athens, Greece. Input data are based on a literature review, and on results from a field study conducted among office occupants and architects in Athens.

The results show that the influence of occupants on greenhouse gas emissions is larger than the influence of building design. Energy saving office equipment, as well as active use of building controls for shading and lighting by occupants are crucial parameters regarding the reduction of CO2 emissions. In mixed mode buildings, the coefficient of performance of the cooling system is an important parameter as well. Regarding thermal and visual comfort, the influence of building design is predominant. A green building, well protected against heat from the sun and able to balance solar and internal heat gains, provides higher comfort levels and is less affected by the influence of occupants. In mixed mode buildings, building design is the predominant influence on the magnitude of cooling loads. A hot summer including heat waves can significantly reduce thermal comfort and increase the resulting greenhouse gas emissions. Green buildings are least affected by these influences.

The EN 15251 adaptive thermal comfort model provides a thermal comfort evaluation method valid throughout Europe. However, for the Mediterranean climate of Athens, Greece, most of the configurations investigated within this study do not meet the requirements according to this model. EN 15251 refers to an adaptive thermal comfort model for naturally ventilated and to a static model for mechanically ventilated buildings. For mixed mode buildings, the static model is recommended, but literature indicates that occupants in those buildings might be more tolerant towards higher temperatures. The hypothetical application of the EN 15251 adaptive thermal comfort model in mixed mode offices, as investigated in this study, shows potential for greenhouse gas emission savings. However, this influence is small compared to that of building design and occupants. Conclusions are drawn regarding the categorisation and exceeding criteria according to EN 15251 adaptive thermal comfort model for offices in a Mediterranean climate.

The results of this work show, that not only green buildings, but also green occupants can significantly contribute to the mitigation of the climate change. Mechanisms of the real estate market as well as the lifestyle of occupants are important influences in this context. Sustainability therefore refers to finding the right balance between occupant’s comfort expectations and resulting greenhouse gas emissions for a specific building, rather than optimisation of single parameters

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a holistic approach to comfort and greenhouse gas emissions in mixed mode offices. It is based on parametric studies for a typical cellular office in the Mediterranean climate of Athens, Greece, using building simulation.

Considered parameters are the influence of different building design, varying occupant behaviour and internal heat loads, as well as of an exceptionally hot summer. Additionally, the performance of a cooling strategy following the comfort limits according to the EN 15251 adaptive model is compared with the common fixed cooling set point 22°C.

The performance of mixed mode offices is evaluated regarding thermal comfort, daylight autonomy and related greenhouse gas emissions. Results indicate strategies to improve sustainability in mixed mode offices in Athens, by balancing the influencing parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The climate change scenarios of the Intergovernmental Panel on Climate Change (IPCC) predict a significant increase in temperatures over the next decades. Architecture and building occupants have to respond to this change, but little information is currently available in how far the predicted changes are likely to affect comfort and energy performance in buildings. This study therefore investigates the climate change sensitivity of the following parameters: adaptive thermal comfort according to Ashrae Standard 55 and EN 15251, energy consumption, heating and cooling loads, and length of heating and cooling periods. The study is based on parametric simulations of typical office room configurations in the context of Athens, Greece. They refer to different building design priorities and account for different occupant behaviour by using an ideal and worst case scenario. To evaluate the impact of the climate change, simulations are compared based on a common standard weather data set for Athens, and a generated climate change data set for the IPCC A2 scenario. The results show a significant impact of the climate change on all investigated parameters. They also indicate that in this context the optimisation of comfort and energy performance is likely to be related to finding the best possible balance between building (design) and occupant behaviour and other contextual influences, rather than a straightforward optimisation of separated single parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the impact of climate change on comfort and energy performance in offices in relation to the influence of building design and occupants. It focuses on a typical cellular office room in the context of Athens, Greece, as input for a parametric study using the building simulation software EnergyPlus. Three different building design variations are combined with two different occupant scenarios and 4 different weather data sets for IPCC climate change scenario A2.

For naturally ventilated buildings adaptive thermal comfort is evaluated according to ASHRAE Standard 55 and EN 15251. For mixed mode context evaluation is focused on greenhouse gas emissions and peak heating / cooling loads. Results indicate significant impact of the climate change on thermal comfort, and deviations between both comfort models. Comparing climate change, building design and occupant scenarios indicates that building design is the predominant influence on thermal comfort, whereas occupants are the predominant influence on greenhouse gas emissions.