43 resultados para ELEMENT

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations of 13 elements were determined in the muscle, liver, intestine, kidney, and gonads of cultured and wild carp caught at two sites in Lake Kasumigaura, Japan, between September 1994 and September 1995. Despite having a reputation for being heavily polluted, the carp were not heavily burdened with metals. Our results suggest that despite their dietary differences, the wild and cultured fish were accumulating and distributing metals in the same manner and that aquaculture practices are not increasing metal concentrations in these fish. Metal concentrations were lowest in muscle, and did not exceed established quality standards for fish. The differences in metal concentrations between cultivated and wild carp are negligible and should pose no health problems for consumers of either type of fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction is a critical factor for sheet metal forming (SMF). The Coulomb friction model is usually used in most finite element (FE) simulation for SMF. However, friction is a function of the local contact deformation conditions, such as local pressure, roughness and relative velocity. Frictional behaviour between contact surfaces can be based on three cases: boundary, hydrodynamic and mixed lubrication. In our microscopic friction model based on the finite element method (FEM), the case of dry contact between sheet and tool has been considered. In the view of microscopic geometry, roughness depends upon amplitude and wavelength of surface asperities of sheet and tool. The mean pressure applied on the surface differs from the pressure over the actual contact area. The effect of roughness (microscopic geometric condition) and relative speed of contact surfaces on friction coefficient was examined in the FE model for the microscopic friction behaviour. The analysis was performed using an explicit FE formulation. In this study, it was found that the roughness of deformable sheet decreases during sliding and the coefficient of friction increases with increasing roughness of contact surfaces. Also, the coefficient of friction increases with the increase of relative velocity and adhesive friction coefficient between contact surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous experimental studies have been carried out to investigate the collapse of tubular metallic crash structures under axial compression. Some simple theoretical models have been developed but these often assume one type of progressive collapse, which is not always representative of the real situation. Finite Element (FE) models, when further refined, have the potential to predict the actual collapse mode and how it influences the load-displacement and energy absorption characteristics. This paper describes an FE modelling investigation with the explicit code LS−DYNA. An automatic mesh generation programme written by the authors is used to set up shell and solid element tube models. Mesh specification issues and features relating to the contact and friction models are discussed in detail. The crush modes, load-deflection characteristics and energy absorption values found in the simulations are compared with a reasonable degree of correlation to those observed in a physical testing programme; however, improvements are still required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object-oriented finite element method (OOFEM) has attracted the attention of many researchers. Compared with the traditional finite element method, OOFEM software has the advantages of maintenance and reuse. Moreover, it is easier to expand the architecture to a distributed one. In this paper, we introduce a distributed architecture of a object-oriented finite element preprocessor. A comparison between the distributed system and the centralised system shows that the former, presented in the paper, greatly improves the performance of mesh generation. Other finite element analysis modules could be expanded according to this architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite Element Method (FEM) is widely used in Science and Engineering since 1960’s. The vast majority of FEM software is procedure-oriented. However, this conventional style of designing FEM software encounters problems in maintenance, reuse, and expansion of the software. Recently the object-oriented finite element method attracts the attention of lots of researchers, and now there is a growing interest in this method. In this paper, the object-oriented finite element (OOFE) is briefly introduced. Then the design and development of an integrated OOFE system is described. A comparison of the integrated OOFE system and a procedure-oriented system shows that our OOFE system has many advantages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to improve the understanding of deformation of micro medical needle and thread during assembly and then to develop an economical and flexible deformation method. Therefore, the swaging process is computationally simulated with the finite element method in this paper. A commercially available explicit nonlinear finite element analysis code, LS-Dyna, is used to model the 3-D deformation and contact problem. As the firmness of the assembly on the needle depends on the contact force and friction, the contact and the slide between the needle and thread are taken into account in the simulation. The general surface-to-surface contact algorithm (STS) is used to simulate the contact. The paper provides an insight into the deformation of the micro products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an innovative surface treatment technique for metal alloys, with the great improvement of their fatigue, corrosion and wear resistance performance. Finite element method has been widely applied to simulate the LSP to provide the theoretically predictive assessment and optimally parametric design. In the current work, 3-D numerical modelling approaches, combining the explicit dynamic analysis, static equilibrium analysis algorithms and different plasticity models for the high strain rate exceeding 106s-1, are further developed. To verify the proposed methods, 3-D static and dynamic FEA of AA7075-T7351 rods subject to two-sided laser shock peening are performed using the FEA package–ABAQUS. The dynamic and residual stress fields, shock wave propagation and surface deformation of the treated metal from different material modelling approaches have a good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burnishing is a surface modification process, which involves plastic deformation of the material at the surface of the component due to the application a highly polished and hard roller, under pressure. This results in the improvement of the surface finish of the component and induces residual compressive stresses on the surface of the component. The present work deals with the optimization of the burnishing force for the best surface finish, at constant speed and feed, for Aluminium and Mild steel workpieces. A 3dimensional finite element model is proposed for the simulation of the burnishing process, and the analysis is carried out at the optimum force determined experimentally. The induced compressive stress in the components is determined from the finite element analysis and this value is then compared with the results obtained from X-ray diffraction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface finish is an important factor in creating the durable metal components, and fatigue strength can be improved if compressive residual stresses are produced in the surface. Burnishing is a finishing process and compressive residual stresses are induced during the process. The present study of minimizing the surface roughness based on the experimental work, and finite element model was developed to evaluate the analytical results. Commercial purity Mild Steel and Aluminium were selected as work specimens and a high carbon high chromium roller was used as a tool for the burnishing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radial return mapping algorithm within the computational context of a hybrid Finite Element and Particle-In-Cell (FE/PIC) method is constructed to allow a fluid flow FE/PIC code to be applied solid mechanic problems with large displacements and large deformations. The FE/PIC method retains the robustness of an Eulerian mesh and enables tracking of material deformation by a set of Lagrangian particles or material points. In the FE/PIC approach the particle velocities are interpolated from nodal velocities and then the particle position is updated using a suitable integration scheme, such as the 4th order Runge-Kutta scheme[1]. The strain increments are obtained from gradients of the nodal velocities at the material point positions, which are then used to evaluate the stress increment and update history variables. To obtain the stress increment from the strain increment, the nonlinear constitutive equations are solved in an incremental iterative integration scheme based on a radial return mapping algorithm[2]. A plane stress extension of a rectangular shape J2 elastoplastic material with isotropic, kinematic and combined hardening is performed as an example and for validation of the enhanced FE/PIC method. It is shown that the method is suitable for analysis of problems in crystal plasticity and metal forming. The method is specifically suitable for simulation of neighbouring microstructural phases with different constitutive equations in a multiscale material modelling framework.