13 resultados para ELASTIC-PLASTIC SOLIDS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the Young’s modulus and the yield strength of the strip are considered in order to modify the deformation length analysis proposed by Bhattacharyya et al. New analytical equations are developed assuming an elastic-perfectly plastic material behaviour and the deformation length analysed for the simple case of roll forming a U-channel; the analytical results are verified by comparison with experimental data found in the literature. The proposed elastic-plastic deformation length is shorter than Bhattacharyya’s which is rigid-perfectly plastic. It is observed that the influence of elastic properties on the deformation length is not as significant as the plastic properties; however, the authors believe that the elastic effects become more important under conditions where a major area of the strip is under elastic deformation such as when the flange length is long.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The indentation slope curve from a spherical indentation on elastic-plastic materials is examined. By comparing it with that of an linear elastic material of the same elastic properties, we found that the start point of plastic yielding for an elastic-plastic material can be easily located from the indentation slope curve. Based on this analysis, a simple but effective method is proposed to measure the plastic yield stress of very small samples from a spherical nano-indentation slope curve.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The common grades of steel used in roll forming are: hot rolled carbon steel, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as it can lead to problems in forming. In roll forming, shape defects such as bow, twist and camber are considered to be related to very small plastic strains in the longitudinal direction and hence knowledge of the material properties in the elastic plastic transition range is necessary if the process is to be modelled accurately. Previous studies with aluminium have indicated that skin pass rolling can lead to residual stresses in the strip. In this work, the study was extended to aged carbon steel and to the effect of roller leveling on both aged material and strip that had been given a light cold rolling to simulate a skin pass treatment. The results suggest that roller leveling reduced the magnitude of residual stresses resulting from skin pass rolling.

The significant differences observed between tensile and bending test results, at and near, the elastic plastic transition reinforces the need to consider bending properties when assessing the effect of prior processing on strip for roll forming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, advanced high strength steels (AHSS) have been used in a wide range of automotive applications; they may have property variations through the thickness and the properties may also be dependent of prior processing including pre-straining. In order to model forming processes precisely using, for example, finite element analysis, it is important that material input data should adequately reflect these effects. It is known that shape defects in roll forming are related to small strains in material that has undergone prior deformation in a different strain path. Much research has already been performed on the change in the Young’s Modulus once a steel sheet has been plastically deformed,however many of these tests have only been conducted using tensile testing, and therefore may not take into account differences in compressive and tensile unloading. This research investigates the effect of tensile pre-straining on bending behaviour for various types of material;in bending, one half of the sheet will load and unload in compression and hence experience deformation under a reversed stress. Four different materials were pre-strained in tension with 1%, 3%, 7%, 11% and 25% elongation. Using a free bending test, moment curvature diagrams were obtained for bending and unloading. The results showed that the characteristics of the moment curvature diagram depended on the degree of pre-straining; more highly strained samples showed an earlier elastic-plastic transformation and a decreased Young's Modulus during unloading. This was compared to previous literature results using only tensile tests. Our results could influence the modeling of springback in low tension sheet operations, such as roll forming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To enable the design and optimisation of forming processes at room temperature the material behaviour of Ti-6Al-4 V needs to be accurately represented in numerical analysis and this requires an advanced material model. In particular, an accurate representation of the shape and size of the yield locus as well as its evolution during forming is important. In this study a rigorous set of experiments on the quasi-static deformation behaviour of a Ti-6Al-4 V alloy sheet sample at room temperature was conducted for various loading conditions and a constitutive material model developed. To quantify the anisotropy and asymmetry properties, tensile and compression tests were carried out for different specimen orientations. To examine the Bauschinger effect and the transient hardening behaviour in - plane tensile - compression and compression - tensile tests were performed. Balanced biaxial and plane strain tension tests were conducted to construct and validate the yield surface of the Ti-6Al-4 V alloy sheet sample at room temperature. A recently proposed anisotropic elastic-plastic constitutive material model, so-called HAH, was employed to describe the behaviour, in particular for load reversals. The HAH yield surface is composed of a stable component, which includes plastic anisotropy and is distorted by a fluctuating component. The key of the formulation is the use of a suitable yield function that reproduces the experimental observations well for the stable component. Meanwhile, the rapid evolution of the material structure must be captured at the macro - scale level by the fluctuating component embedded in the HAH model. Compared to conventional hardening equations, the proposed model leads to higher accuracy in predicting the Bauschinger effect and the transient hardening behaviour for the Ti-6Al-4 V sheet sample tested at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is dedicated to numerical prediction of the bending of thin aluminium alloy sheets, with a focus on the material parameter identification and the prediction of rupture with or without pre-strains in tension prior to bending. The experimental database consists of i) mechanical tests at room temperature, such as tension and simple shear, performed at several orientations to the rolling direction and biaxial tension ii) air bending tests of rectangular samples after (or not) pre-straining in tension. The mechanical model is composed of the Yld2004-18p anisotropic yield criterion (Barlat et al. [3]) associated with a mixed hardening rule. The material parameters (altogether 21) are optimized with an inverse approach, in order to minimize the gap between experimental data and model predictions. Then, the Hosford-Coulomb rupture criterion is used in an uncoupled way, and the parameters are determined from tensile tests, both uniaxial and biaxial, with data up to rupture. In a second step, numerical simulations of the bending tests are performed, either on material in its original state or after pre-straining in tension, with pre-strain magnitudes increasing from 0.19 up to 0.3. The comparisons are performed on different outputs: load evolution, strain field and prediction of the rupture. A very good correlation is obtained over all the tests, in the identification step as well as in the validation one. Moreover, the fracture criterion proves to be successful whatever the amount of pre-strain may be. A convincing representation of the mechanical behavior at room temperature for an aluminium alloy is thus obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plastic zones and associated deformations ahead of a fatigue crack are well established nowadays. In-depth plane strain elasto-plastic finite element analysis is conducted in this investigation to understand the nature of cyclic plastic deformation and damage around soft and hard elliptical inclusions. Similar to fatigue crack tip, cyclic/reverse plastic zone and monotonic plastic zone are visible for soft elliptical inclusion. In the cyclic plastic zone, low cycle fatigue is the dominant cyclic deformation mode during symmetric load cycling, while ratcheting is dominant during asymmetric load cycling. The size of cyclic plastic zone depends upon the amplitude of remote stress while, the size of monotonic plastic zone depends upon the maximum remote stress. The size of monotonic plastic zone is equal to cyclic plastic zone during symmetric load cycling. The shape and size of plastic zones also depend upon the orientation of the soft inclusion. Cyclic plastic damage progression in the cyclic plastic zone for soft (MnS) inclusion is significant, while no cyclic plastic zone is visible for hard inclusion (Al2O3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of on-site sewage management systems in Australia fail to perform to expectations. About 60% to 80% of on-site systems reportedly fail to produce acceptable effluent quality, and there is an increaed concern about the risks associated with public health and environmental pollution. In Victoria, a large proportion of septic tank installations have been reported to discharge highly polluted waste to drains and streams. Users, often considered by regulators as operators, have to bear the costs of upgrade/replacement of their old systems to meet stringent water quality guidelines. Some of the common problems include clogging of the disposal fields due to solids and organic overloading and surfacing of highly polluted effluent. Large land application area is subsequently required for irrigating the effluent and/or installation of upgraded disposal fields.
This paper investigates the effectiveness of various types of textile and plastic media, in polishing primary tank effluent, downstream from a typical two-compartment septic tank system. Results to date show that high biochemical oxygen demand removal rates are achieved from the textile and plastic media (up to 86% and 83% respectively). At these removal levels, the performance of a combined conventional septic tank system and plastic/textile filters is comparable to that of an advanced aerated wastewater treatment system. This approach, subject to further investigation, could provide a less costly upgrade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five halogen-free orthoborate salts comprised of three different cations (cholinium, pyrrolidinium and imidazolium) and two orthoborate anions, bis(mandelato)borate and bis(salicylato)borate, were synthesised and characterised by DSC, X-ray diffraction and NMR. DSC measurements revealed that glass transition points of these orthoborate salts are in the temperature range from −18 to −2 °C. In addition, it was found that [EMPy][BScB] and [EMIm][BScB] salts have solid–solid phase transitions below their melting points, i.e. they exhibit typical features of plastic crystals. Salts of the bis(salicylato)borate anion [BScB]− have higher melting points compared with corresponding salts of the bis(mandelato)borate anion [BMB]−. Single crystal X-ray diffraction crystallography (for [Chol][BScB] crystals) and solid-state multinuclear (13C, 11B and 15N) NMR spectroscopy were employed for the structural characterisation of [Chol][BScB], [EMPy][BScB] and [EMIm][BScB], which are solids at room temperature: a strong interaction between [BScB]− anions and [Chol]+ cations was identified as (i) hydrogen bonding between OH of [Chol]+ and carbonyl groups of [BScB]− and (ii) as the inductive C–Hπ interaction. In the other salt, [EMIm][BScB], anions exhibit ππ stacking in combination with C–Hπ interactions with [EMIm]+ cations. These interactions were not identified in [EMPy][BScB] probably because of the lack of aromaticity in cations of the latter system. Our data on the formation of a lanthanum complex with bis(salicylato)borate in the liquid mixture of La3+(aq) with [Chol][BScB] suggest that this class of novel ILs can be potentially used in the extraction processes of metal ions of rare earth elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll forming is a continuous process in which a flat strip is incrementally bent to a desired profile. This process is increasingly used in automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly employed for roll forming process design. Formability and springback are two major concerns in the roll forming AHSS materials. Previous studies have shown that the elastic modulus (Young’s modulus) of AHSS materials can change when the material undergoes plastic deformation and the main goal of this study is to investigate the effect of a change in elastic modulus during forming on springback in roll forming. FEA has been applied for the roll forming simulation of a V-section using material data determined by experimental loading-unloading tests performed on mild, XF400, and DP780 steel. The results show that the reduction of the elastic modulus with pre-strain significantly influences springback in the roll forming of high strength steel while its effect is less when a softer steel is formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state ion conductors based on organic ionic plastic crystals (OIPCs) are a promising alternative to conventional liquid electrolytes in lithium battery applications. The OIPC-based electrolytes are safe (nonflammable) and flexible in terms of design and operating conditions. Magnetic resonance imaging (MRI) is a powerful noninvasive method enabling visualization of various chemical phenomena. Here, we report a first quantitative in situ MRI study of operating solid-state lithium cells. Lithium ion transfer into the OIPC matrix during the ongoing discharge of the anode results in partial liquefaction of the electrolyte at the metal interface. The developed liquid component enhances the ion transport across the interface and overall battery performance. Displacement of the liquefaction front is accompanied by a faster Li transfer through the grain boundaries and depletion at the cathode. The demonstrated solid-liquid hybrid properties, inherent in many OIPCs, combine benefits of highly conductive ionic liquids with safety and flexibility of solids.