2 resultados para ECR ion source

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis covers the development of the traditionally fluorescent bis(8-quinolinol-5-sulfonic acid) magnesium (II) fluorophore as a chemiluminescent emitter. A brief description of luminescence spectroscopy and its application to analytical chemistry lays the foundation to the discussion of the results obtained herein. This includes the synthesis and identification of two so called ‘water soluble’ aryl oxamides 2,2’-oxalyl-bis(trifluoromethanesulfonyl) imino] ethylene-bis(N- methylpyridinium) trifluoromethane sulfonate (PETQ) and 2,2’-oxalyl-bis(trifluoromethanesulfonyl) imino]ethylene-bis(N-pyridinium) chloride (PETH), previously developed for the US navy as a possible emergency light source, yet the synthetic methodology were incomplete. The inconsistencies of the synthetic methods for PETQ and PETH were overcome with yields satisfactory for their preliminary analytical evaluation. The evaluation of these aryl oxamides, including 4,4’-oxalyI- bis[(trifluoromethanesulfonyl) imino]ethylene-bis(l-methyM-benzylpiperidinium) trifluoromethanesulfonate (BPTQ), 4,4’-oxalyl-bis [(trifluoromethylsulfonyl)imino] ethylene-bis(N-methylmorpholinium)trifluoromethanesulfonate (METQ) and the oxalate bis(2,4,6-trichlorophenyl) oxalate (TCPO) were performed with the peroxyoxalate chemiluminescent reaction using bis(8-quinolinol-5-sulfonic acid) magnesium (II) as the fluorophore. A univariate optimisation of this system resulted in 0,0082 mol 1-1 the detection limit of magnesium in the absence of cationic surfactants and 0.0041 mol 1-1 in their presence for the majority of these compounds. The oxamides were found to be insoluble in water with long ulrasonication periods required to dissolve the compound, with solvents such as acetonitrile preferred. The determination of other chemiluminescent metal-8HQS chelates to replace magnesium -8HQS in the peroxyoxalate were limited to Al (III), Cd (II), Ca (II), In (II) and Zn (II), unfortunately these metals all possessed poorer detection limits than those obtained using magnesium The base reaction conditions used for the flow injection system with chemiluminescent detection were transferred to an ion chromatographic configuration for the separation of magnesium from other cations on an exchange column. After a univariate and simplex optimisation of these conditions, the detection limit of magnesium was found to be 0.0411 mol 1-1 which was less than the limits that could be achieved with fluorescent detection, The further development of this reaction to incorporate the displacement of magnesium from Mg-EDTA by other metals that possessed a higher conditional stability constant than magnesium also proved to be problematic with interferences from not only EDTA but from the eluant (lactic acid) from the cation column. Using this system the detection limits of the displacing metals were found to be in the order of 10 mg 1-1 which was substantially less that what was observed when exactly the same configuration was used with fluorescent detection. The final component of the thesis entails the discussion of the background emission that results from the reaction of oxamides/oxalates with hydrogen peroxide. A detailed investigation into the reaction of TCPO and hydrogen peroxide in the presence of various additives, such as imidazole , heavy atoms and triethylamine illustrated the existence of a further intermediate in fee mechanism for this reaction. The species responsible for this emission was attributed to the degradation product 2,4,6-trichlorophenyi of TCPO, which was supported by the non-existent background present with the oxamides that do not contain this degradation product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rechargeable lithium batteries have long been considered an attractive alternative power source for a wide variety of applications. Safety and stability1 concerns associated with solvent-based electrolytes has necessitated the use of lithium intercalation materials (rather than lithium metal) as anodes, which decreases the energy storage capacity per unit mass. The use of solid lithium ion conductors - based on glasses, ceramics or polymers - as the electrolyte would potentially improve the stability of a lithium metal anode while alleviating the safety concerns. Glasses and ceramics conduct via a fast ion mechanism, in which the lithium ions move within an essentially static framework. In contrast, the motion of ions in polymer systems is similar to that in solvent-based electrolytes - motion is mediated by the dynamics of the host polymer, thereby restricting the conductivity to relatively low values. Moreover, in the polymer systems, the motion of the lithium ions provides only a small fraction of the overall conductivity2, which results in severe concentration gradients during cell operation, causing premature failure3. Here we describe a class of materials, prepared by doping lithium ions into a plastic crystalline matrix, that exhibit fast lithium ion motion due to rotational disorder and the existence of vacancies in the lattice. The combination of possible structural variations of the plastic crystal matrix and conductivities as high as 2 3 1024 S cm21 at 60 8C make these materials very attractive for secondary battery applications.