13 resultados para E3 ligase

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular mechanisms influencing muscle atrophy in humans are poorly understood. Atrogin-1 and MuRF1, two ubiquitin E3-ligases, mediate rodent and cell muscle atrophy and are suggested to be regulated by an Akt/Forkhead (FKHR) signaling pathway. Here we investigated the expression of atrogin-1, MuRF1, and the activity of Akt and its catabolic (FKHR and FKHRL1) and anabolic (p70s6k and GSK-3β) targets in human skeletal muscle atrophy. The muscle atrophy model used was amyotrophic lateral sclerosis (ALS). All measurements were performed in biopsies from 22 ALS patients and 16 healthy controls as well as in G93A ALS mice. ALS patients had a significant increase in atrogin-1 mRNA and protein content, which was associated with a decrease in Akt activity. There was no difference in the mRNA and protein content of FKHR, FKHRL1, p70s6k, and GSK-3β. Similar observations were made in the G93A ALS mice. Human skeletal muscle atrophy, as seen in the ALS model, is associated with an increase in atrogin-1 and a decrease in Akt. The transcriptional regulation of human atrogin-1 may be controlled by an Akt-mediated transcription factor other than FKHR or via another signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity residing within its RING finger domain. We have previously reported that c-Cbl–deficient mice exhibit elevated energy expenditure, reduced adiposity, and improved insulin action. In this study, we examined mice expressing c-Cbl protein with a loss-of-function mutation within the RING finger domain (c-CblA/– mice). Compared with control animals, c-CblA/– mice display a phenotype that includes reduced adiposity, despite greater food intake; reduced circulating insulin, leptin, and triglyceride levels; and improved glucose tolerance. c-CblA/– mice also display elevated oxygen consumption (13%) and are protected against high-fat diet–induced obesity and insulin resistance. Unlike c-CblA/– mice, mice expressing a mutant c-Cbl with the phosphatidylinositol (PI) 3-kinase binding domain ablated (c-CblF/F mice) exhibited an insulin sensitivity, body composition, and energy expenditure similar to that of wild-type animals. These results indicate that c-Cbl ubiquitin ligase activity, but not c-Cbl–dependent activation of PI 3-kinase, plays a key role in the regulation of whole-body energy metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity involved in regulating the degradation of receptor tyrosine kinases. We have recently reported that c-Cbl–/– mice exhibit a lean phenotype and enhanced peripheral insulin action likely due to elevated energy expenditure. In the study reported here, we examined the effect of a high-fat diet on energy homeostasis and glucose metabolism in these animals. When c-Cbl–/– mice were fed a high-fat diet for 4 weeks, they maintained hyperphagia, higher whole-body oxygen consumption (27%), and greater activity (threefold) compared with wild-type animals fed the same diet. In addition, the activity of several enzymes involved in mitochondrial fat oxidation and the phosphorylation of acetyl CoA carboxylase was significantly increased in muscle of high-fat–fed c-Cbl–deficient mice, indicating a greater capacity for fat oxidation in these animals. As a result of these differences, fat-fed c-Cbl–/– mice were 30% leaner than wild-type animals and were protected against high-fat diet–induced insulin resistance. These studies are consistent with a role for c-Cbl in regulating nutrient partitioning in skeletal muscle and emphasize the potential of c-Cbl as a therapeutic target in the treatment of obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is an E3 ubiquitin ligase that has an important role in regulating the degradation of cell surface receptors. In the present study we have examined the role of c-Cbl in whole-body energy homeostasis. c-Cb-/- mice exhibited a profound increase in whole-body energy expenditure as determined by increased core temperature and whole-body oxygen consumption. As a consequence, these mice displayed a decrease in adiposity, primarily due to a reduction in cell size despite an increase in food intake. These changes were accompanied by a significant
increase in activity (2- to 3-fold). In addition, cc-Cb-/- mice displayed a marked improvement in whole-body insulin action, primarily due to changes in muscle metabolism. We observed increased protein levels of the insulin receptor (4-fold) and uncoupling protein-3 (2-fold) in skeletal muscle and a significant increase in the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. These fmdings suggest that c-Cbl plays an integral role in whole-body fuel homeostasis by regulating whole-body energy expenditure and insulin action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl− channel expressed in the apical membrane of fluid-transporting epithelia. The apical membrane density of CFTR channels is determined, in part, by endocytosis and the postendocytic sorting of CFTR for lysosomal degradation or recycling to the plasma membrane. Although previous studies suggested that ubiquitination plays a role in the postendocytic sorting of CFTR, the specific ubiquitin ligases are unknown. c-Cbl is a multifunctional molecule with ubiquitin ligase activity and a protein adaptor function. c-Cbl co-immunoprecipitated with CFTR in primary differentiated human bronchial epithelial cells and in cultured human airway cells. Small interfering RNA-mediated silencing of c-Cbl increased CFTR expression in the plasma membrane by inhibiting CFTR endocytosis and increased CFTR-mediated Cl− currents. Silencing c-Cbl did not change the expression of the ubiquitinated fraction of plasma membrane CFTR. Moreover, the c-Cbl mutant with impaired ubiquitin ligase activity (FLAG-70Z-Cbl) did not affect the plasma membrane expression or the endocytosis of CFTR. In contrast, the c-Cbl mutant with the truncated C-terminal region (FLAG-Cbl-480), responsible for protein adaptor function, had a dominant interfering effect on the endocytosis and plasma membrane expression of CFTR. Moreover, CFTR and c-Cbl co-localized and co-immunoprecipitated in early endosomes, and silencing c-Cbl reduced the amount of ubiquitinated CFTR in early endosomes. In summary, our data demonstrate that in human airway epithelial cells, c-Cbl regulates CFTR by two mechanisms: first by acting as an adaptor protein and facilitating CFTR endocytosis by a ubiquitin-independent mechanism, and second by ubiquitinating CFTR in early endosomes and thereby facilitating the lysosomal degradation of CFTR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic is an established human carcinogen. However, there has been much controversy about the shape of the arsenic response curve, particularly at low doses. This controversy has been exacerbated by the fact that the  mechanism(s) of arsenic carcinogenesis are still unclear and because there are few satisfactory animal models for arsenic-induced carcinogenesis. Recent epidemiological studies have shown that the relative risk for cancer among populations exposed to ≤60 ppb As in their drinking water is often lower than the risk for the unexposed control population. We have found that treatment of human keratinocyte and fibroblast cells with 0.1 to 1 μM arsenite (AsIII) also produces a low dose protective effect against oxidative stress and DNA damage. This response includes increased transcription, protein levels and enzyme activity of several base excision repair genes, including DNA polymerase β and DNA ligase I. At higher concentrations (> 10 μM), As induces down-regulation of DNA repair, oxidative DNA damage and apoptosis. This low dose adaptive (protective) response by a toxic agent is known as hormesis and is characteristic of many agents that induce oxidative stress. A mechanistic model for arsenic carcinogenesis based on these data would predict that the low dose risk for carcinogenesis should be sub-linear. The threshold dose where toxicity outweighs protection is hard to predict based on in vitro dose response data, but might be estimated if one could determine the form (metabolite) and concentration of arsenic responsible for changes in gene regulation in the target tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: The molecular mechanisms of muscle atrophy in chronic obstructive pulmonary disease (COPD) are poorly understood. In wasted animals, muscle mass is regulated by several AKT-related signaling pathways.
Objectives: To measure the protein expression of AKT, forkhead box class O (FoxO)-1 and -3, atrogin-1, the phosphophrylated form of AKT, p70S6K glycogen synthase kinase-3ß (GSK-3ß), eukaryotic translation initiation factor 4E binding protein-1 (4E-BP1), and the mRNA expression of atrogin-1, muscle ring finger (MuRF) protein 1, and FoxO-1 and -3 in the quadriceps of 12 patients with COPD with muscle atrophy and 10 healthy control subjects. Five patients with COPD with preserved muscle mass were subsequently recruited and were compared with six patients with low muscle mass.
Methods: Protein contents and mRNA expression were measured by Western blot and quantitative polymerase chain reaction, respectively.
Measurements and Main Results: The levels of atrogin-1 and MuRF1 mRNA, and of phosphorylated AKT and 4E-BP1 and FoxO-1 proteins, were increased in patients with COPD with muscle atrophy compared with healthy control subjects, whereas atrogin-1, p70S6K, GSK-3ß, and FoxO-3 protein levels were similar. Patients with COPD with muscle atrophy showed an increased expression of p70S6K, GSK-3ß, and 4E-BP1 compared with patients with COPD with preserved muscle mass.
Conclusions: An increase in atrogin-1 and MuRF1 mRNA and FoxO-1 protein content was observed in the quadriceps of patients with COPD. The transcriptional regulation of atrogin-1 and MuRF1 may occur via FoxO-1, but independently of AKT. The overexpression of the muscle hypertrophic signaling pathways found in patients with COPD with muscle atrophy could represent an attempt to restore muscle mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The linkage and association between inherent blood pressure and underlying genotype is potentially confounded by antihypertensive treatment. We estimated blood pressure variance components (genetic, shared environmental, individual-specific) in 767 adult volunteer families by using a variety of approaches to adjusting blood pressure of the 244 subjects (8.2%) receiving antihypertensive medications. The additive genetic component of variance for systolic pressure was 73.9 mm Hg(2) (SE, 8.8) when measured pressures (adjusted for age by gender within each generation) were used but fell to 61.4 mm Hg(2) (SE, 8.0) when treated subjects were excluded. When the relevant 95th percentile values were substituted for treated systolic pressures, the additive genetic component was 81.9 mm Hg(2) (SE, 9.5), but individual adjustments in systolic pressure ranged from -53.5 mm Hg to +64.5 mm Hg (mean, +17.2 mm Hg). Instead, when 10 mm Hg was added to treated systolic pressure, the additive genetic component rose to 86.6 mm Hg(2) (SE, 10.1). Similar changes were seen in the shared environment component of variance for systolic pressure and for the combined genetic and shared environmental (ie, familial) components of diastolic pressure. There was little change in the individual-specific variance component across any of the methods. Therefore, treated subjects contribute important information to the familial components of blood pressure variance. This information is lost if treated subjects are excluded and obscured by treatment effects if unadjusted measured pressures are used. Adding back an appropriate increment of pressure restores familial components, more closely reflects the pretreatment values, and should increase the power of genomic linkage and linkage disequilibrium analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle atrophy occurs in many chronic diseases and disuse conditions. Its severity reduces patient recovery, independence and quality of life. The discovery of two muscle-specific E3 ubiquitin ligases, MAFbx/ atrogin-1 and Muscle RING Finger-1 (MuRF1), promoted an expectation of these molecules as targets for therapeutic development. While numerous studies have determined the conditions in which MAFbx/atrogin-1 and MuRF1 mRNA levels are regulated, few studies have investigated their functional role in skeletal muscle. Recently, studies identifying new target substrates for MAFbx/atrogin-1 and
MuRF1, outside of their response to the initiation of muscle atrophy, suggest that there is more to these proteins than
previously appreciated. This review will highlight our present knowledge of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy, the impact of potential therapeutics and their known regulators and substrates. Finally, we will comment on new approaches that may expand our knowledge of these two molecules in their control of skeletal muscle function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
The effects of fish oil (FO) supplementation and the dietary replacement of FO with flaxseed oil (FlaxO) and canola oil (CO) on the growth of cultured abalone was investigated. The study involved three growth experiments: (E1) diets containing 0.5, 1.0, 1.5, 2.0 and 2.5% of FO, respectively; (E2) diets in which FO was serially replaced by 25, 50, 75 and 100% FlaxO, respectively; and (E3) diets in which FO was serially replaced by 25, 50, 75 and 100% CO, respectively.

Results
In Experiment 1, abalone fed a diet supplemented with 1.5% FO showed a significantly higher (121.2 ± 1.1 mg day−1) daily growth rate of weight (DGRw) compared to control (70.1 ± 1.71 mg day−1). In Experiment 2, abalone fed 1.5% FO diet and diets containing 25–75% FlaxO showed no significant differences in DGRw. The diet containing 100% FlaxO showed significantly lower (63.3 ± 6.7 mg day−1) DGRw. In Experiment 3, abalone fed diets containing 25% and 50% CO showed similar DGRw as those fed a 1.5% FO diet. The diet containing 75% and 100% CO showed significantly lower (63.7 ± 5.0 to 95.4 ± 5.1 mg day−1) DGRw.

Conclusion
Supplementation with 1.5% of dietary FO can improve growth performance in cultured abalone. It is feasible to replace 75% of dietary FO with FlaxO and 50% of dietary FO with CO, without negative effect on growth performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular factors targeted by androgens and estrogens on muscle mass are not fully understood. The current study aimed to explore gene and protein expression of Atrogin-1, MuRF1, and myostatin in an androgen deprivation-induced muscle atrophy model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione (GSH) is a tripeptide often considered to be the master antioxidant in cells. GSH plays an integral role in cellular redox regulation and is also known to have a role in mammalian copper homeostasis. In vitro evidence suggests that GSH is involved in copper uptake, sequestration and efflux. This study was undertaken to further investigate the roles that GSH plays in neuronal copper homeostasis in vivo, using the model organism Drosophila melanogaster. RNA interference-mediated knockdown of the Glutamate-cysteine ligase catalytic subunit gene (Gclc) that encodes the rate-limiting enzyme in GSH biosynthesis was utilised to genetically deplete GSH levels. When Gclc was knocked down in all neurons, this caused lethality, which was partially rescued by copper supplementation and was exacerbated by additional knockdown of the copper uptake transporter Ctr1A, or over-expression of the copper efflux transporter ATP7. Furthermore, when Gclc was knocked down in a subset of neuropeptide-producing cells, this resulted in adult progeny with unexpanded wings, a phenotype previously associated with copper dyshomeostasis. In these cells, Gclc suppression caused a decrease in axon branching, a phenotype further enhanced by ATP7 over-expression. Therefore, we conclude that GSH may play an important role in regulating neuronal copper levels and that reduction in GSH may lead to functional copper deficiency in neurons in vivo. We provide genetic evidence that glutathione (GSH) levels influence Cu content or distribution in vivo, in Drosophila neurons. GSH could be required for binding Cu imported by Ctr1A and distributing it to chaperones, such as Mtn, CCS and Atox1. Alternatively, GSH could modify the copper-binding and transport activities of Atox1 and the ATP7 efflux protein via glutathionylation of copper-binding cysteines.