43 resultados para Drilling Mud Invasion

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applications of the axisymmetric Boussinesq equation to groundwater hydrology and reservoir engineering have long been recognised. An archetypal example is invasion by drilling fluid into a permeable bed where there is initially no such fluid present, a circumstance of some importance in the oil industry. It is well known that the governing Boussinesq model can be reduced to a nonlinear ordinary differential equation using a similarity variable, a transformation that is valid for a certain time-dependent flux at the origin. Here, a new analytical approximation is obtained for this case. The new solution,, which has a simple form, is demonstrated to be highly accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The White-faced Storm Petrel (Pelagodroma marina) is restricted to three breeding colonies within Victoria: Mud Islands and South Channel Fort in Port Phillip Bay, and Tullaberga Island off Mallacoota. Numbers of these storm petrels breeding on Mud Islands have declined considerably since early last century. White-faced Storm Petrels were recorded on Mud Islands from early September 2002 until mid-March 2003 when the last chicks fledged. Eggs were laid from late October to early December, with chicks hatching in the later half of December. The mean incubation period was 51.7 days (± 3.2 days (s.d.), range = 38–53, n = 13), and may have been extended by periods of egg neglect. The mean nestling period was 54.8 days (± 4.4 days (s.d.), range 50–70, n = 21). Chick growth is described. Hatching success was 54% and fledging success was 77.8%, with overall breeding success being 42%. Burrow densities were found to be influenced by plant species, vegetation height and soil moisture. The position of the burrow within the colony was shown to influence breeding success, with those nearer the edge of the storm petrel colony, closer to the marsh, and further from a colony of Australian White (Threskiornis molucca) and Straw-necked (T. spinicollis) Ibis recording higher success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines stories published around the beginning of the twentieth century depicting Asian invasions of Australia, and discovers consistent patterns of gendered and racialised assumptions setting Australian men, the bush and the future of the white race against Australian women, the city, and the asianisation of the nation. It argues that warrior Japan created a powerful case for an answering tradition of defiant, bush-based masculinity in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Disturbance and anthropogenic land use changes are usually considered to be key factors facilitating biological invasions. However, specific comparisons of invasion success between sites affected to different degrees by these factors are rare.

2. In this study we related the large-scale distribution of the invading New Zealand mud snail (Potamopyrgus antipodarum) in southern Victorian streams, Australia, to anthropogenic land use, flow variability, water quality and distance from the site to the sea along the stream channel.

3. The presence of P. antipodarum was positively related to an index of flow-driven disturbance, the coefficient of variability of mean daily flows for the year prior to the study.

4. Furthermore, we found that the invader was more likely to occur at sites with multiple land uses in the catchment, in the forms of grazing, forestry and anthropogenic developments (e.g. towns and dams), compared with sites with low-impact activities in the catchment. However, this relationship was confounded by a higher likelihood of finding this snail in lowland sites close to the sea.

5. We conclude that P. antipodarum could potentially be found worldwide at sites with similar ecological characteristics. We hypothesise that its success as an invader may be related to an ability to quickly re-colonise denuded areas and that population abundances may respond to increased food resources. Disturbances could facilitate this invader by creating spaces for colonisation (e.g. a possible consequence of floods) or changing resource levels (e.g. increased nutrient levels in streams with intense human land use in their catchments).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies against the 19 kDa C‐terminal fragment of merozoite surface protein 1 (MSP119) are a major component of the invasion‐inhibitory response in individuals immune to malaria. We report here the acquisition of MSP119‐specific invasion‐inhibitory antibodies in a group of transmigrants who experienced their sequential malaria infections during settlement in an area of Indonesia where malaria is highly endemic. We used 2 transgenic Plasmodium falciparum parasite lines that expressed either endogenous MSP119 or the homologous region from P. chabaudi to measure the MSP119‐specific invasion‐inhibitory antibodies. The results revealed that the acquisition of MSP119‐specific invasion‐inhibitory antibodies required 2 or more P. falciparum infections. In contrast, enzyme‐linked immunosorbent assays on the same serum samples showed that MSP119‐specific antibodies are present after the first malaria infection. This delay in the acquisition of functional antibodies by residents of areas where malaria is endemic is consistent with the observation that multiple malaria infections are required before clinical immunity is acquired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies capable of inhibiting the invasion of Plasmodium merozoites into erythrocytes are present in individuals that are clinically immune to the malaria parasite. Those targeting the 19-kD COOH-terminal domain of the major merozoite surface protein (MSP)-119 are a major component of this inhibitory activity. However, it has been difficult to assess the overall relevance of such antibodies to antiparasite immunity. Here we use an allelic replacement approach to generate a rodent malaria parasite (Plasmodium berghei) that expresses a human malaria (Plasmodium falciparum) form of MSP-119. We show that mice made semi-immune to this parasite line generate high levels of merozoite inhibitory antibodies that are specific for P. falciparum MSP-119. Importantly, protection from homologous blood stage challenge in these mice correlated with levels of P. falciparum MSP-119–specific inhibitory antibodies, but not with titres of total MSP-119–specific immunoglobulins. We conclude that merozoite inhibitory antibodies generated in response to infection can play a significant role in suppressing parasitemia in vivo. This study provides a strong impetus for the development of blood stage vaccines designed to generate invasion inhibitory antibodies and offers a new animal model to trial P. falciparum MSP-119 vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies from malaria-exposed individuals can agglutinate merozoites released from Plasmodium schizonts, thereby preventing them from invading new erythrocytes. Merozoite coat proteins attached to the plasma membrane are major targets for host antibodies and are therefore considered important malaria vaccine candidates. Prominent among these is the abundant glycosylphosphatidylinositol (GPI)-anchored merozoite surface protein 1 (MSP1) and particularly its C-terminal fragment (MSP1(19)) comprised of two epidermal growth factor (EGF)-like modules. In this paper, we revisit the role of agglutination and immunity using transgenic fluorescent marker proteins. We describe expression of heterologous MSP1(19)'miniproteins' on the surface of Plasmodium falciparum merozoites. To correctly express these proteins, we determined that GPI-anchoring and the presence of a signal sequence do not allow default export of proteins from the endoplasmic reticulum to merozoite surface and that extra sequence elements are required. The EGFs are insufficient for correct trafficking unless they are fused to additional residues that normally reside upstream of this fragment. Antibodies specifically targeting the surface-expressed miniprotein can inhibit erythrocyte invasion in vitro despite the presence of endogenous MSP1. Using a line expressing a green fluorescent protein-MSP1 fusion protein, we demonstrate that one mode of inhibition by antibodies targeting the MSP1(19) domain is the rapid agglutinating of merozoites prior to erythrocyte attachment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium 5553 is a recently developed modification of Russian near-β titanium alloy VT-22 which has applications and potential particularly in the aerospace industry for such key components as landing gear. However, indications are that Ti-5553 has poorer machinability characteristics than other Ti alloys and a comprehensive and far-reaching analysis is a necessary research imperative. This paper presents the result of phase transformation and work hardening during drilling of Ti-5553 compared with Ti-64. The aim of this research work is to optimise the machining condition for Ti-5553, in which the β to a phase transformation, together with material work hardening could be fully understood. Analysis of machinability indicators, such as subsurface micrograph and hardness of drilled samples and drilling forces and torques, demonstrated that Ti-5553 generally has poorer machinability characteristics than Ti-64 and to some extent this variation has been quantified to allow for further and more detailed investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies.