9 resultados para Distributed vertical loads

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Masonry walls are usually laid with the individual masonry units along a course overlapping units in the course below. Commonly, the perpend joints in the course occur above the mid-points of the units below to form a ‘half-bond’ or above a third point to form a ‘third-bond’. The amount of this overlap has a profound influence on the strength of a wall supported on three or four sides, where lateral pressures from wind cause combined vertical and horizontal flexure. Where masonry units are laid with mortar joints, the torsional shear bond resistance between the mortar and overlapping units largely determines the horizontal flexural strength. If there is zero bond strength between units, then the horizontal flexural strength is derived from the frictional resistance to torsion on the overlapping bed-faces of the units. This thesis reports a theoretical and experimental investigation into the frictional properties of overlapping units when subjected to combinations of vertical and horizontal moments and vertical axial compression. These basic properties were used to develop a theory to predict the lateral strength of walls supported on two, three or four sides. A plastic theory of behaviour was confirmed by experiment. The theory was then used to determine maximum unbraced panel sizes for particular boundary conditions. Design charts were developed to determine temporary bracing requirements for panels during construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates small-signal stability of a distribution system with distributed generator and induction motor load, as a dynamic element. The analysis is carried out over a distribution test system with different types of induction motor loads. The system is linearised by the perturbation method. Eigenvalues and participation factors are calculated to see the modal interaction of the system. The study indicates that load voltage dynamics significantly influence the damping of a newly identified voltage mode. This mode has frequency of oscillation between the electromechanical and subsynchronous oscillation of power systems. To justify the validity of the modal analysis time domain simulation is also carried out. Finally, significant parameters of the system that affect the damping and frequency of the oscillation are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the modeling of the distribution network is done in a different way where the distributed generator and dynamic loads are considered. Based on this modeling, this paper presents an analysis to investigate the dynamic and static load variation effect on the distribution network. Graphical interface industry software is used to conduct all the aspects of model implementation and carry out the extensive simulation studies. Here also focuses on the worst case scenario and the different fault effect on the generator. Finally, this paper presents the voltage profile for different penetration with different network configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel excitation control design to improve the voltage profile of power distribution networks with distributed generation and induction motor loads. The system is linearised by perturbation technique. Controller is designed using the linear-quadratic-Gaussian (LQG) controller synthesis method. The LQG controller is addressed with norm-bounded uncertainty. The approach considered in this paper is to find the smallest upper bound on the H∞ norm of the uncertain system and to design an optimal controller based on this bound. The design method requires the solution of a linear matrix inequality. The performance of the controller is tested on a benchmark power distribution system. Simulation results show that the proposed controller provides impressive oscillation damping compared to the conventional excitation controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the impact of different types of load models in distribution network with distributed wind generation. The analysis is carried out for a test distribution system representative of the Kumamoto area in Japan. Firstly, this paper provides static analysis showing the impact of static load on distribution system. Then, it investigates the effects of static as well as composite load based on the load composition of IEEE task force report [1] through an accurate time-domain analysis. The analysis shows that modeling of loads has a significant impact on the voltage dynamics of the distribution system with distributed generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the oscillatory behavior of power distribution systems in the presence of distributed generation. The analysis is carried out over a distribution test system with two doubly fed induction type wind generators and different types of induction motor loads. The system is linearized by the perturbation method. Eigenvalues are calculated to see the modal interaction within the system. The study indicates that interactions between closely placed converter controllers and induction motor loads significantly influence the damping of the oscillatory modes of the system. The critical modes have a frequency of oscillation between the electromechanical and subsynchronous oscillations of power systems. Time-domain simulations are carried out to verify the validity of the modal analysis and to provide a physical feel for the types of oscillations that occur in distribution systems. Finally, significant parameters of the system that affect the damping and frequency of the oscillation are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the primary issues associated with the efficient and effective utilization of distributed computing is resource management and scheduling. As distributed computing resource failure is a common occurrence, the issue of deploying support for integrated scheduling and fault-tolerant approaches becomes paramount importance. To this end, we propose a fault-tolerant dynamic scheduling policy that loosely couples dynamic job scheduling with job replication scheme such that jobs are efficiently and reliably executed. The novelty of the proposed algorithm is that it uses passive replication approach under high system load and active replication approach under low system loads. The switch between these two replication methods is also done dynamically and transparently. Performance evaluation of the proposed fault-tolerant scheduler and a comparison with similar fault-tolerant scheduling policy is presented and shown that the proposed policy performs better than the existing approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter presents an unbalanced multi-phase optimal power flow (UMOPF) based planning approach to determine the optimum capacities of multiple distributed generation units in a distribution network. An adaptive weight particle swarm optimization algorithm is used to find the global optimum solution. To increase the efficiency of the proposed scheme, a co-simulation platform is developed. Since the proposed method is mainly based on the cost optimization, variations in loads and uncertainties within DG units are also taken into account to perform the analysis. An IEEE 123 node distribution system is used as a test distribution network which is unbalanced and multi-phase in nature, for the validation of the proposed scheme. The superiority of the proposed method is investigated through the comparisons of the results obtained that of a Genetic Algorithm based OPF method. This analysis also shows that the DG capacity planning considering annual load and generation uncertainties outperform the traditional well practised peak-load planning.