2 resultados para Discretisation,

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12]. Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete. It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous dynamical systems may be extended. A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability. Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied. The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system. The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last 30 to 40 years, many researchers have combined to build the knowledge base of theory and solution techniques that can be applied to the case of differential equations which include the effects of noise. This class of ``noisy'' differential equations is now known as stochastic differential equations (SDEs). Markov diffusion processes are included within the field of SDEs through the drift and diffusion components of the Itô form of an SDE. When these drift and diffusion components are moderately smooth functions, then the processes' transition probability densities satisfy the Fokker-Planck-Kolmogorov (FPK) equation -- an ordinary partial differential equation (PDE). Thus there is a mathematical inter-relationship that allows solutions of SDEs to be determined from the solution of a noise free differential equation which has been extensively studied since the 1920s. The main numerical solution technique employed to solve the FPK equation is the classical Finite Element Method (FEM). The FEM is of particular importance to engineers when used to solve FPK systems that describe noisy oscillators. The FEM is a powerful tool but is limited in that it is cumbersome when applied to multidimensional systems and can lead to large and complex matrix systems with their inherent solution and storage problems. I show in this thesis that the stochastic Taylor series (TS) based time discretisation approach to the solution of SDEs is an efficient and accurate technique that provides transition and steady state solutions to the associated FPK equation. The TS approach to the solution of SDEs has certain advantages over the classical techniques. These advantages include their ability to effectively tackle stiff systems, their simplicity of derivation and their ease of implementation and re-use. Unlike the FEM approach, which is difficult to apply in even only two dimensions, the simplicity of the TS approach is independant of the dimension of the system under investigation. Their main disadvantage, that of requiring a large number of simulations and the associated CPU requirements, is countered by their underlying structure which makes them perfectly suited for use on the now prevalent parallel or distributed processing systems. In summary, l will compare the TS solution of SDEs to the solution of the associated FPK equations using the classical FEM technique. One, two and three dimensional FPK systems that describe noisy oscillators have been chosen for the analysis. As higher dimensional FPK systems are rarely mentioned in the literature, the TS approach will be extended to essentially infinite dimensional systems through the solution of stochastic PDEs. In making these comparisons, the advantages of modern computing tools such as computer algebra systems and simulation software, when used as an adjunct to the solution of SDEs or their associated FPK equations, are demonstrated.